바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

TRAVELING WAVE GLOBAL PRICE DYNAMICS OF LOCAL MARKETS WITH LOGISTIC SUPPLIES

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2010, v.17 no.1, pp.93-106
Kim, Yong-In
  • Downloaded
  • Viewed

Abstract

We employ the methods of Lattice Dynamical System to establish a global model extending the Walrasian evolutionary cobweb model in an independent single local market to the global market evolution over an infinite chain of many local markets with interaction of each other through a diffusion of prices between them. For brevity of the model, we assume linear decreasing demands and logistic supplies with naive predictors, and investigate the traveling wave behaviors of global price dynamics and show that their dynamics are conjugate to those of H<TEX>$\acute{e}$</TEX>non maps and hence can exhibit complicated behaviors such as period-doubling bifurcations, chaos, and homoclic orbits etc.

keywords
Cobweb model, lattice dynamical system, H<tex> $\acute{e}$</tex>non map

Reference

1.

2.

3.

(2007). . Journal of Economic Dynamics & Control, .

4.

5.

(1992). . Chaos, 2.

6.

(1998). . Nonlinearity, 1, 491-516.

7.

Brock, W.A.;Hommes, C.H.;Wagener, F.O.O.. (2005). Evolutionary dynamics in markets with many trader types. Journal of Mathematical Economics, 41(1), 7-42. 10.1016/j.jmateco.2004.02.002.

8.

Brock, W.A.;Hommes, C.H.. (1998). Heterogeneous beliefs and routes to chaos in a simple asset pricing model. Journal of Economic Dynamics and Control, 22(8), 1235-1274. 10.1016/S0165-1889(98)00011-6.

9.

Aranson, I S;Afraimovich, V S;Rabinovich, M I. (1990). Stability of spatially homogeneous chaotic regimes in unidirectional chains. Nonlinearity, 3(3), 639-651. 10.1088/0951-7715/3/3/006.

10.

Brock, William A.;Hommes, Cars H.. (1997). A Rational Route to Randomness. Econometrica, 65(5), 1059-1095. 10.2307/2171879.

11.

12.

Feit. (1978). . Communications in Mathematical Physics, 61(3), 249-260. 10.1007/BF01940767.

13.

Sterling, D.;Dullin, H.R.;Meiss, J.D.. (1999). Homoclinic bifurcations for the Henon map. Physica D: Nonlinear Phenomena, 134(2), 153-184. 10.1016/S0167-2789(99)00125-6.

14.

15.

16.

Robinson. (1983). . Communications in Mathematical Physics, 90(3), 433-459. 10.1007/BF01206892.

17.

18.

Kirchgraber. (2006). . Annali di Matematica Pura ed Applicata, 185(S5), 187-204. 10.1007/s10231-004-0142-4.

19.

Mora. (1993). . Acta Mathematica, 171(1), 1-71. 10.1007/BF02392766.

20.

Hommes. (1998). . Journal of Economic Behavior & Organization, 33(3-4), 333-362. 10.1016/S0167-2681(97)00062-0.

21.

H챕non. (1976). . Communications in Mathematical Physics, 50(1), 69-77. 10.1007/BF01608556.

22.

(0000). . Communications in Mathematical Physics, 67, 137-146.

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics