ISSN : 1226-0657
This paper deals with the second-order differential equation (p(t)x'(t))' + g(t)f(t, x(t), x'(t)) = 0, a.e. in (0, <TEX>$\infty$</TEX>) with the boundary conditions <TEX>$$x(0)={\int}^{\infty}_0g(s)x(s)ds,\;{lim}\limits_{t{\rightarrow}{\infty}}p(t)x'(t)=0,$$</TEX> where <TEX>$g\;{\in}\;L^1[0,{\infty})$</TEX> with g(t) > 0 on [0, <TEX>$\infty$</TEX>) and <TEX>${\int}^{\infty}_0g(s)ds\;=\;1$</TEX>, f is a g-Carath<TEX>$\acute{e}$</TEX>odory function. By applying the coincidence degree theory, the existence of at least one solution is obtained.
(0000). . J. Appl. Math. Comput., .
Yang. (2009). . Journal of Applied Mathematics and Computing, 29(1), 301-309. 10.1007/s12190-008-0131-7.
Yan, B.. (2001). Boundary Value Problems on the Half-Line with Impulses and Infinite Delay. Journal of Mathematical Analysis and Applications, 259(1), 94-114. 10.1006/jmaa.2000.7392.
(2009). . Elec. J. Qual. Theo. Diff. Equa., 15, 1-15.
Lian, H.;Pang, H.;Ge, W.. (2008). Solvability for second-order three-point boundary value problems at resonance on a half-line. Journal of Mathematical Analysis and Applications, 337(2), 1171-1181. 10.1016/j.jmaa.2007.04.038.
Kosmatov, N.. (2008). Multi-point boundary value problems on an unbounded domain at resonance. Nonlinear Analysis: Theory, Methods & Applications, 68(8), 2158-2171. 10.1016/j.na.2007.01.038.
Jiang, D.;Agarwal, R.P.. (2002). A uniqueness and Existence theorem for a singular third-order boundary value Problem on [0, ~). Applied Mathematics Letters, 15(4), 445-451. 10.1016/S0893-9659(01)00157-4.
Ma, R.. (2003). Existence of positive solutions for second-order boundary value problems on infinity intervals. Applied Mathematics Letters, 16(1), 33-39. 10.1016/S0893-9659(02)00141-6.
(1990). . J. Math. Anal. Appl., 147, 127-133.
Chen, S.Z.;Zhang, Y.. (1995). Singular Boundary Value Problems on a Half-Line. Journal of Mathematical Analysis and Applications, 195(2), 449-468. 10.1006/jmaa.1995.1367.
(1979). .