바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

SOLVABILITY FOR SECOND-ORDER BOUNDARY VALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS ON AN UNBOUNDED DOMAIN AT RESONANCE

SOLVABILITY FOR SECOND-ORDER BOUNDARY VALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS ON AN UNBOUNDED DOMAIN AT RESONANCE

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2010, v.17 no.1, pp.39-49
Yang, Ai-Jun (COLLEGE OF SCIENCE, ZHEJIANG UNIVERSITY OF TECHNOLOGY)
Wang, Lisheng (SCHOOL OF MATHEMATICS AND PHYSICS, JINGGANGSHAN UNIVERSITY)
Ge, Weigao (DEPARTMENT OF APPLIED MATHEMATICS, BEIJING INSTITUTE OF TECHNOLOGY)

Abstract

This paper deals with the second-order differential equation (p(t)x'(t))' + g(t)f(t, x(t), x'(t)) = 0, a.e. in (0, <TEX>$\infty$</TEX>) with the boundary conditions <TEX>$$x(0)={\int}^{\infty}_0g(s)x(s)ds,\;{lim}\limits_{t{\rightarrow}{\infty}}p(t)x'(t)=0,$$</TEX> where <TEX>$g\;{\in}\;L^1[0,{\infty})$</TEX> with g(t) > 0 on [0, <TEX>$\infty$</TEX>) and <TEX>${\int}^{\infty}_0g(s)ds\;=\;1$</TEX>, f is a g-Carath<TEX>$\acute{e}$</TEX>odory function. By applying the coincidence degree theory, the existence of at least one solution is obtained.

keywords
integral boundary condition, unbounded domain, g-Carath<tex> $\acute{e}$</tex>odory function, resonance

참고문헌

1.

(0000). . J. Appl. Math. Comput., .

2.

Yang. (2009). . Journal of Applied Mathematics and Computing, 29(1), 301-309. 10.1007/s12190-008-0131-7.

3.

Yan, B.. (2001). Boundary Value Problems on the Half-Line with Impulses and Infinite Delay. Journal of Mathematical Analysis and Applications, 259(1), 94-114. 10.1006/jmaa.2000.7392.

4.

(2009). . Elec. J. Qual. Theo. Diff. Equa., 15, 1-15.

5.

Lian, H.;Pang, H.;Ge, W.. (2008). Solvability for second-order three-point boundary value problems at resonance on a half-line. Journal of Mathematical Analysis and Applications, 337(2), 1171-1181. 10.1016/j.jmaa.2007.04.038.

6.

Kosmatov, N.. (2008). Multi-point boundary value problems on an unbounded domain at resonance. Nonlinear Analysis: Theory, Methods & Applications, 68(8), 2158-2171. 10.1016/j.na.2007.01.038.

7.

Jiang, D.;Agarwal, R.P.. (2002). A uniqueness and Existence theorem for a singular third-order boundary value Problem on [0, ~). Applied Mathematics Letters, 15(4), 445-451. 10.1016/S0893-9659(01)00157-4.

8.

Ma, R.. (2003). Existence of positive solutions for second-order boundary value problems on infinity intervals. Applied Mathematics Letters, 16(1), 33-39. 10.1016/S0893-9659(02)00141-6.

9.

(1990). . J. Math. Anal. Appl., 147, 127-133.

10.

Chen, S.Z.;Zhang, Y.. (1995). Singular Boundary Value Problems on a Half-Line. Journal of Mathematical Analysis and Applications, 195(2), 449-468. 10.1006/jmaa.1995.1367.

11.

12.

(1979). .

13.

한국수학교육학회지시리즈B:순수및응용수학