바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

CR MANIFOLDS OF ARBITRARY CODIMENSION WITH A CONTRACTION

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2010, v.17 no.2, pp.157-165
Kim, Sung-Yeon

Abstract

Let (M,p) be a germ of a <TEX>$C^{\infty}$</TEX> CR manifold of CR dimension n and CR codimension d. Suppose (M,p) admits a <TEX>$C^{\infty}$</TEX> contraction at p. In this paper, we show that (M,p) is CR equivalent to a generic submanifold in <TEX>$\mathbb{C}^{n+d}$</TEX> defined by a vector valued weighted homogeneous polynomial.

keywords
CR manifold, CR map, contraction

Reference

1.

2.

Baouendi. (1985). . Inventiones Mathematicae, 82(2), 359-396. 10.1007/BF01388808.

3.

4.

Catlin, David. (1984). Boundary Invariants of Pseudoconvex Domains. The Annals of Mathematics, 120(3), 529-586. 10.2307/1971087.

5.

D'Angelo, John P.. (1982). Real Hypersurfaces, Orders of Contact, and Applications. The Annals of Mathematics, 115(3), 615-637. 10.2307/2007015.

6.

7.

8.

9.

TANAKA. (1962). . Journal of the Mathematical Society of Japan, 14(4), 397-429. 10.2969/jmsj/01440397.

10.

Rosay. (1979). . Annales de l���institut Fourier, 29(4), 91-97. 10.5802/aif.768.

11.

(1999). . Math. J. of Toyama Univ., 22, 25-34.

12.

Kim, K. T.;Kim, S. Y.. (2008). CR Hypersurfaces with a Contracting Automorphism. Journal of Geometric Analysis, 18(3), 800-834. 10.1007/s12220-008-9033-z.

13.

Wong. (1977). . Inventiones Mathematicae, 41(3), 253-257. 10.1007/BF01403050.

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics