ISSN : 1226-0657
Let (M,p) be a germ of a <TEX>$C^{\infty}$</TEX> CR manifold of CR dimension n and CR codimension d. Suppose (M,p) admits a <TEX>$C^{\infty}$</TEX> contraction at p. In this paper, we show that (M,p) is CR equivalent to a generic submanifold in <TEX>$\mathbb{C}^{n+d}$</TEX> defined by a vector valued weighted homogeneous polynomial.
Baouendi. (1985). . Inventiones Mathematicae, 82(2), 359-396. 10.1007/BF01388808.
Catlin, David. (1984). Boundary Invariants of Pseudoconvex Domains. The Annals of Mathematics, 120(3), 529-586. 10.2307/1971087.
D'Angelo, John P.. (1982). Real Hypersurfaces, Orders of Contact, and Applications. The Annals of Mathematics, 115(3), 615-637. 10.2307/2007015.
TANAKA. (1962). . Journal of the Mathematical Society of Japan, 14(4), 397-429. 10.2969/jmsj/01440397.
Rosay. (1979). . Annales de l���institut Fourier, 29(4), 91-97. 10.5802/aif.768.
(1999). . Math. J. of Toyama Univ., 22, 25-34.
Kim, K. T.;Kim, S. Y.. (2008). CR Hypersurfaces with a Contracting Automorphism. Journal of Geometric Analysis, 18(3), 800-834. 10.1007/s12220-008-9033-z.
Wong. (1977). . Inventiones Mathematicae, 41(3), 253-257. 10.1007/BF01403050.