바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

STABILITY ANALYSIS FOR PREDATOR-PREY SYSTEMS

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2010, v.17 no.3, pp.211-229
Shim, Seong-A
  • Downloaded
  • Viewed

Abstract

Various types of predator-prey systems are studied in terms of the stabilities of their steady-states. Necessary conditions for the existences of non-negative constant steady-states for those systems are obtained. The linearized stabilities of the non-negative constant steady-states for the predator-prey system with monotone response functions are analyzed. The predator-prey system with non-monotone response functions are also investigated for the linearized stabilities of the positive constant steady-states.

keywords
the classical Lotka-Volterra predator-prey system, Holling type II, III, IV functional responses, non-negative constant steady-states, linear stabilities

Reference

1.

Rosenzweig. (1971). . Science, 171(3969), 385-387. 10.1126/science.171.3969.385.

2.

(1972). . Science, 175, 564-565.

3.

Omenn. (1972). . Science, 177(4052), 904. 10.1126/science.177.4052.904.

4.

(1972). . Ecology, 60, 481-485.

5.

(2008). . J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math., 15(3), 329-342.

6.

7.

Holling. (1959). . The Canadian Entomologist, 91(5), 293-320. 10.4039/Ent91293-5.

8.

(1965). . Mem. Entomol. Soc. Can., 45, 3-60.

9.

May. (1972). . Science, 177(4052), 900-902. 10.1126/science.177.4052.900.

10.

Kuang, Y.;Freedman, H.I.. (1988). Uniqueness of limit cycles in Gause-type models of predator-prey systems. Mathematical Biosciences, 88(1), 67-84. 10.1016/0025-5564(88)90049-1.

11.

Riebesell, John F.. (1974). Paradox of Enrichment in Competitive Systems. Ecology, 55(1), 183-187. 10.2307/1934634.

12.

Andrews. (1968). . Biotechnology and Bioengineering, 10(6), 707-723. 10.1002/bit.260100602.

13.

(1986). . Bull. Math. Biol., 48, 493-508.

14.

Bhattacharyya, Rakhi;Mukhopadhyay, Banibrata;Bandyopadhyay, Malay. (2003). Diffusion-Driven Stability Analysis of A Prey-Predator System with Holling Type-IV Functional Response. Systems Analysis Modelling Simulation, 43(8), 1085-1093. 10.1080/0232929031000150409.

15.

Bush, A W;Cook, A E. (1976). The effect of time delay and growth rate inhibition in the bacterial treatment of wastewater.. Journal of Theoretical Biology, 63(2), 385-395. 10.1016/0022-5193(76)90041-2.

16.

17.

18.

Sugie, Jitsuro;aKohno, Rie;Miyazaki, Rinko. (1997). On a Predator-Prey System of Holling Type. Proceedings of the American Mathematical Society, 125(7), 2041-2050. 10.1090/S0002-9939-97-03901-4.

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics