ISSN : 1226-0657
We introduce the concept of semi-compatible and weak-compatible in <TEX>$\cal{M}$</TEX>-fuzzy metric space, and prove some fixed point theorem for four self maps satisfying some conditions in <TEX>$\cal{M}$</TEX>-fuzzy metric space.
Park, Jin Han;Park, Jong Seo;Kwun, Young Chel. (2008). Fixed points in <TEX>$${\mathcal{M}}$$</TEX>-fuzzy metric spaces. Fuzzy Optimization and Decision Making, 7(4), 305-315. 10.1007/s10700-008-9039-9.
(1992). . Bulletin of Calcutta Mathematical Society, 84, 329-336.
Grabiec, M.. (1988). Fixed points in fuzzy metric spaces. Fuzzy Sets and Systems, 27(3), 385-389. 10.1016/0165-0114(88)90064-4.
George, A.;Veeramani, P.. (1994). On some results in fuzzy metric spaces. Fuzzy Sets and Systems, 64(3), 395-399. 10.1016/0165-0114(94)90162-7.
(1975). . Kybernetica, 11, 326-334.
Oprea, J.. (2008). The propagation of non-Lefschetz type, the Gottlieb group and related questions. Journal of Fixed Point Theory and Applications, 3(1), 63-83. 10.1007/s11784-008-0063-8.
(1960). . Pacific J. Math., 10, 314-334.