ISSN : 1226-0657
Exton [Hypergeometric functions of three variables, J. Indian Acad. Math. 4 (1982), 113~119] introduced 20 distinct triple hypergeometric functions whose names are <TEX>$X_i$</TEX> (i = 1, ..., 20) to investigate their twenty Laplace integral representations whose kernels include the confluent hypergeometric functions <TEX>$_oF_1$</TEX>, <TEX>$_1F_1$</TEX>, a Humbert function <TEX>${\Psi}_2$</TEX>, a Humbert function <TEX>${\Phi}_2$</TEX>. The object of this paper is to present 16 (presumably new) integral representations of Euler type for the Exton hypergeometric function <TEX>$X_2$</TEX> among his twenty <TEX>$X_i$</TEX> (i = 1, ..., 20), whose kernels include the Exton function <TEX>$X_2$</TEX> itself, the Appell function <TEX>$F_4$</TEX>, and the Lauricella function <TEX>$F_C$</TEX>.
(2010). . Honam Math. J., 32(1), 61-71.
(1999). . Indian J. Pure Appl. Math., 30, 1107-1109.
(1982). . J. Indian Acad. Math., 4, 113-119.
Kim, Yong-Sup;Rathie, Arjun K.. (2007). ON AN EXTENSION FORMULAS FOR THE TRIPLE HYPERGEOMETRIC SERIES X<SUB>8</SUB> DUE TO EXTON. Bulletin of the Korean Mathematical Society, 44(4), 743-751. 10.4134/BKMS.2007.44.4.743.
(2009). . East Asian Math. J., 25(4), 481-486.
(2005). . Honam Math. J., 27(4), 603-608.
Kim, Yong-Sup;Rathie, Arjun Kumar;Choi, June-Sang. (2009). ANOTHER METHOD FOR PADMANABHAM'S TRANSFORMATION FORMULA FOR EXTON'S TRIPLE HYPERGEOMETRIC SERIES X<SUB>8</SUB>. Communications of the Korean Mathematical Society, 24(4), 517-521. 10.4134/CKMS.2009.24.4.517.