바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION <TEX>$X_2$</TEX>

CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION X2

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2010, v.17 no.4, pp.347-354
Choi, June-Sang (Department of Mathematics, Dongguk University)
Hasanov, Anvar (Department of Mathematics, Dongguk University)
Turaev, Mamasali (Department of Mathematics, Dongguk University)

Abstract

Exton [Hypergeometric functions of three variables, J. Indian Acad. Math. 4 (1982), 113~119] introduced 20 distinct triple hypergeometric functions whose names are <TEX>$X_i$</TEX> (i = 1, ..., 20) to investigate their twenty Laplace integral representations whose kernels include the confluent hypergeometric functions <TEX>$_oF_1$</TEX>, <TEX>$_1F_1$</TEX>, a Humbert function <TEX>${\Psi}_2$</TEX>, a Humbert function <TEX>${\Phi}_2$</TEX>. The object of this paper is to present 16 (presumably new) integral representations of Euler type for the Exton hypergeometric function <TEX>$X_2$</TEX> among his twenty <TEX>$X_i$</TEX> (i = 1, ..., 20), whose kernels include the Exton function <TEX>$X_2$</TEX> itself, the Appell function <TEX>$F_4$</TEX>, and the Lauricella function <TEX>$F_C$</TEX>.

keywords
generalized hypergeometric series, multiple hypergeometric functions, integrals of Euler type, Laplace integral, Exton functions <tex> $X_i$</tex>, Humbert function <tex> ${\Psi}_2$</tex>, Appell function <tex> $F_4$</tex>, Lauricella function <tex> $F_C$</tex>

참고문헌

1.

(2010). . Honam Math. J., 32(1), 61-71.

2.

(1999). . Indian J. Pure Appl. Math., 30, 1107-1109.

3.

4.

5.

(1982). . J. Indian Acad. Math., 4, 113-119.

6.

Kim, Yong-Sup;Rathie, Arjun K.. (2007). ON AN EXTENSION FORMULAS FOR THE TRIPLE HYPERGEOMETRIC SERIES X<SUB>8</SUB> DUE TO EXTON. Bulletin of the Korean Mathematical Society, 44(4), 743-751. 10.4134/BKMS.2007.44.4.743.

7.

8.

(2009). . East Asian Math. J., 25(4), 481-486.

9.

10.

(2005). . Honam Math. J., 27(4), 603-608.

11.

Kim, Yong-Sup;Rathie, Arjun Kumar;Choi, June-Sang. (2009). ANOTHER METHOD FOR PADMANABHAM'S TRANSFORMATION FORMULA FOR EXTON'S TRIPLE HYPERGEOMETRIC SERIES X<SUB>8</SUB>. Communications of the Korean Mathematical Society, 24(4), 517-521. 10.4134/CKMS.2009.24.4.517.

한국수학교육학회지시리즈B:순수및응용수학