ISSN : 1226-0657
In this paper, we will investigate the superstability for the sine functional equation from the following Pexider type functional equation: <TEX>$f(x+y)-g(x-y)={\lambda}{\cdot}h(x)k(y)$</TEX> <TEX>${\lambda}$</TEX>: constant, which can be considered an exponential type functional equation, the mixed functional equation of the trigonometric function, the mixed functional equation of the hyperbolic function, and the Jensen type equation.
(1979). . Proc. Amer. Math. Soc., 74, 242-246.
Bourgin. (1949). . Duke Mathematical Journal, 16(2), 385-397. 10.1215/S0012-7094-49-01639-7.
(2006). . Intern. J. Math. & Math. Sci., , 1-2.
(1998). . Rocznik Naukowo-Dydak. Prace Mat., 15, 1-14.
Rassias, Themistocles M.. (1978). On the Stability of the Linear Mapping in Banach Spaces. Proceedings of the American Mathematical Society, 72(2), 297-300. 10.1090/S0002-9939-1978-0507327-1.
Cholewa, Piotr W.. (1983). The Stability of the Sine Equation. Proceedings of the American Mathematical Society, 88(4), 631-634. 10.1090/S0002-9939-1983-0702289-8.
(1968). . Proc. Amer. Math. Soc., 19, 69-74.
(2009). . Appl. Math. Lett., 331, 439-443.
(0000). . Aust. J. Math. Anal., .
Kim, G.H.. (2007). The stability of d'Alembert and Jensen type functional equations. Journal of Mathematical Analysis and Applications, 325(1), 237-248. 10.1016/j.jmaa.2006.01.062.
Kim, G.H.. (2007). A stability of the generalized sine functional equations. Journal of Mathematical Analysis and Applications, 331(2), 886-894. 10.1016/j.jmaa.2006.09.037.
(2007). .
(2007). . Banach J. Math. Anal., 1(2), 227-236.
Kim, Gwang Hui. (2009). On the stability of the generalized sine functional equations. Acta Mathematica Sinica, English Series, 25(1), 29-38. 10.1007/s10114-008-6621-6.
(2001). . Ann. Acad. Pedagog. Crac. Stud. Math., 1, 49-58.
Baker, John A.. (1980). The Stability of the Cosine Equation. Proceedings of the American Mathematical Society, 80(3), 411-416. 10.1090/S0002-9939-1980-0580995-3.
Kim, G.H.. (2008). On the stability of the pexiderized trigonometric functional equation. Applied Mathematics and Computation, 203(1), 99-105. 10.1016/j.amc.2008.04.011.
Hyers, D H. (1941). On the Stability of the Linear Functional Equation.. Proceedings of the National Academy of Sciences, 27(4), 222-224. 10.1073/pnas.27.4.222.