바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

ON THE SUPERSTABILITY OF SOME PEXIDER TYPE FUNCTIONAL EQUATION II

ON THE SUPERSTABILITY OF SOME PEXIDER TYPE FUNCTIONAL EQUATION II

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2010, v.17 no.4, pp.397-411
Kim, Gwang-Hui (Department of Mathematics, Kangnam University)

Abstract

In this paper, we will investigate the superstability for the sine functional equation from the following Pexider type functional equation: <TEX>$f(x+y)-g(x-y)={\lambda}{\cdot}h(x)k(y)$</TEX> <TEX>${\lambda}$</TEX>: constant, which can be considered an exponential type functional equation, the mixed functional equation of the trigonometric function, the mixed functional equation of the hyperbolic function, and the Jensen type equation.

keywords
stability, superstability, functional equation, d'Alembert equation, (hyperbolic) cosine functional equation

참고문헌

1.

2.

(1979). . Proc. Amer. Math. Soc., 74, 242-246.

3.

Bourgin. (1949). . Duke Mathematical Journal, 16(2), 385-397. 10.1215/S0012-7094-49-01639-7.

4.

5.

6.

(2006). . Intern. J. Math. & Math. Sci., , 1-2.

7.

(1998). . Rocznik Naukowo-Dydak. Prace Mat., 15, 1-14.

8.

9.

10.

Rassias, Themistocles M.. (1978). On the Stability of the Linear Mapping in Banach Spaces. Proceedings of the American Mathematical Society, 72(2), 297-300. 10.1090/S0002-9939-1978-0507327-1.

11.

Cholewa, Piotr W.. (1983). The Stability of the Sine Equation. Proceedings of the American Mathematical Society, 88(4), 631-634. 10.1090/S0002-9939-1983-0702289-8.

12.

(1968). . Proc. Amer. Math. Soc., 19, 69-74.

13.

(2009). . Appl. Math. Lett., 331, 439-443.

14.

(0000). . Aust. J. Math. Anal., .

15.

Kim, G.H.. (2007). The stability of d'Alembert and Jensen type functional equations. Journal of Mathematical Analysis and Applications, 325(1), 237-248. 10.1016/j.jmaa.2006.01.062.

16.

Kim, G.H.. (2007). A stability of the generalized sine functional equations. Journal of Mathematical Analysis and Applications, 331(2), 886-894. 10.1016/j.jmaa.2006.09.037.

17.

(2007). .

18.

(2007). . Banach J. Math. Anal., 1(2), 227-236.

19.

Kim, Gwang Hui. (2009). On the stability of the generalized sine functional equations. Acta Mathematica Sinica, English Series, 25(1), 29-38. 10.1007/s10114-008-6621-6.

20.

(2001). . Ann. Acad. Pedagog. Crac. Stud. Math., 1, 49-58.

21.

22.

Baker, John A.. (1980). The Stability of the Cosine Equation. Proceedings of the American Mathematical Society, 80(3), 411-416. 10.1090/S0002-9939-1980-0580995-3.

23.

Kim, G.H.. (2008). On the stability of the pexiderized trigonometric functional equation. Applied Mathematics and Computation, 203(1), 99-105. 10.1016/j.amc.2008.04.011.

24.

Hyers, D H. (1941). On the Stability of the Linear Functional Equation.. Proceedings of the National Academy of Sciences, 27(4), 222-224. 10.1073/pnas.27.4.222.

한국수학교육학회지시리즈B:순수및응용수학