ISSN : 1226-0657
In this paper, we investigate a fuzzy version of stability for the functional equation <TEX>$$f(x+2y)-3f(x+y)+3f(x)-f(x-y)-3f(y)+3f(-y)=0$$</TEX> in the sense of M. Mirmostafaee and M. S. Moslehian.
(1950). On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan, 2, 64-66. 10.2969/jmsj/00210064.
(2003). Finite dimensional fuzzy normed linear spaces. J. fuzzy Math., 11(3), 687-705.
(1994). Fuzzy linear operator and fuzzy normed linear spaces. Bull. Calcutta Math. Soc., 86, 429-436.
(1994). A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl., 184, 431-436. 10.1006/jmaa.1994.1211.
(1941). On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA, 27, 222-224. 10.1073/pnas.27.4.222.
(1984). Fuzzy topological vector spaces II. Fuzzy Sets and Systems, 12, 143-154. 10.1016/0165-0114(84)90034-4.
(1975). Fuzzy metric and statistical metric spaces. Kybernetica, 11, 326-334.
(2008). On the stability of the monomial functional equation. Bull. Korean Math. Soc., 45, 397-403. 10.4134/BKMS.2008.45.2.397.
(2000). On the Stability of Approximately Additive Mappings. Proc. Amer. Math. Soc., 128, 1361-1369. 10.1090/S0002-9939-99-05156-4.
(2008). Fuzzy versions of Hyers-Ulam-Rassias theorem. Fuzzy Sets and Systems, 159, 720-729. 10.1016/j.fss.2007.09.016.
(2009). On stability of a cubic functional equation in intu- itionistic fuzzy normed spaces. Chaos, Solitons & Fractals, 42, 2997-3005. 10.1016/j.chaos.2009.04.041.
(1978). On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc., 72, 297-300. 10.1090/S0002-9939-1978-0507327-1.
(2010). A mixed-type quadratic and cubic functional equation and its stability (61-71). Thai Journal of Mathematics Special Issue (Annual Meeting in Mathematics).
A Collection of Mathematical Problems.