ISSN : 1226-0657
Let X and Y be vector spaces. We introduce a new type of a cubic functional equation <TEX>$f$</TEX> : <TEX>$X{\rightarrow}Y$</TEX>. Furthermore, we assume X is a vector space and (Y, N) is a fuzzy Banach space and then investigate a fuzzy version of the generalized Hyers-Ulam stability in fuzzy Banach space by using fixed point method for the cubic functional equation.
(1992). Finite dimensional fuzzy normed linear spaces. Fuzzy Sets and Systems, 48(2), 239-248. 10.1016/0165-0114(92)90338-5.
(1991). On the stability of additive mappings. Internat. J. Math. Math. Sci., 14, 431-434. 10.1155/S016117129100056X.
(1941). On the stability of the linear equation. Proc. Nat. Acad. Sci. U.S.A., 27, 222-224. 10.1073/pnas.27.4.222.
(1992). Approximate homomorphisms. Aequationes Mathematicae, 44, 125-153. 10.1007/BF01830975.
(1996). Stability of <TEX>$\pi$</TEX>-additive mappings: Applications to nonlinear analysis. Internat. J. Math. Math. Sci., 19(2), 219-228. 10.1155/S0161171296000324.
(2005). Chang On the Hyers-Ulam stability of an Euler-Lagrange type cubic functional equation. J. Computatioal analysis and app., 7(1), 21-33.
(1984). . Fuzzy Sets Sys, 12, 143-154. 10.1016/0165-0114(84)90034-4.
(1975). Fuzzy metric and statistical metric spaces. Kybernetica, 11, 326-334.
(1994). Separation of fuzzy normed linear spaces. Fuzzy Sets and Systems, 63(2), 207-217. 10.1016/0165-0114(94)90351-4.
(1968). A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Amer. Math. Soc., 126(74), 305-309.
(2008). On the stability of the additive Cauchy functional equation in random normed spaces. J. Math. Anal. Appl., 343(1), 567-572. 10.1016/j.jmaa.2008.01.100.
(2008). Fuzzy stability of the Jensen functional equation. Fuzzy Sets Syst, 159, 730-738. 10.1016/j.fss.2007.07.011.
(2006). A fixed point approach to stability of a quadratic equation. Bull. Braz. Math. Soc., 37(3), 361-376. 10.1007/s00574-006-0016-z.
(2007). Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras. Fixed Point Theory Appl, 2007.
(1984). On approximation of approximately linear mappings by linear mappings. Bulletin des Sciences Mathematiques, 108(4), 445-446.
(1978). On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc., 72, 297-300. 10.1090/S0002-9939-1978-0507327-1.
(2003). The fixed point alternative and the stability of functional equations. Fixed Point Theory, 4(1), 91-96.
Principles and Appications of Fixed Point Theory.
Problems in Morden Mathematics.
(1984). Fuzzy generalization of Klomogoroffs theorem. J. Harbin Inst. Technol., 1, 1-7.
(2003). Fuzzy normed spaces of operators and its completeness. Fuzzy Sets and Systems, 133(3), 389-399. 10.1016/S0165-0114(02)00274-9.
On the stability of the Cauchy functional equation: a fixed point approach. Iteration theory (ECIT '02); Grazer Math. Ber..
(1950). On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan, 2, 64-66. 10.2969/jmsj/00210064.
(2004). On the generalized Hyers-Ulam-Rassias stability in Banach modules over a C*-algebra. J. Math. Anal. Appl., 294, 196-205. 10.1016/j.jmaa.2004.02.009.
(2003). Finite dimensional fuzzy normed linear spaces. J. Fuzzy Math., 11(3), 687-705.
(2008). Fixed point methods for the generalized stability of functional equations in a single variable. Fixed Point Theory and Applications, 2008.
(1994). Fuzzy linear operator and fuzzy normed linear spaces. Bull. Calcutta Math. Soc., 86, 429-436.
(1992). On the stability of the quadratic mapping in normed spaces. Abh. Math. Sem. Univ. Hamburg, 62, 59-64. 10.1007/BF02941618.