바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

ON THE FUZZY STABILITY OF CUBIC MAPPINGS USING FIXED POINT METHOD

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2012, v.19 no.4, pp.397-407
https://doi.org/10.7468/jksmeb.2012.19.4.397
Koh, Heejeong

Abstract

Let X and Y be vector spaces. We introduce a new type of a cubic functional equation <TEX>$f$</TEX> : <TEX>$X{\rightarrow}Y$</TEX>. Furthermore, we assume X is a vector space and (Y, N) is a fuzzy Banach space and then investigate a fuzzy version of the generalized Hyers-Ulam stability in fuzzy Banach space by using fixed point method for the cubic functional equation.

keywords
stability, fixed point, fuzzy norm, functional equation, cubic mapping

Reference

1.

(1992). Finite dimensional fuzzy normed linear spaces. Fuzzy Sets and Systems, 48(2), 239-248. 10.1016/0165-0114(92)90338-5.

2.

(1991). On the stability of additive mappings. Internat. J. Math. Math. Sci., 14, 431-434. 10.1155/S016117129100056X.

3.

(1941). On the stability of the linear equation. Proc. Nat. Acad. Sci. U.S.A., 27, 222-224. 10.1073/pnas.27.4.222.

4.

(1992). Approximate homomorphisms. Aequationes Mathematicae, 44, 125-153. 10.1007/BF01830975.

5.

(1996). Stability of <TEX>$\pi$</TEX>-additive mappings: Applications to nonlinear analysis. Internat. J. Math. Math. Sci., 19(2), 219-228. 10.1155/S0161171296000324.

6.

(2005). Chang On the Hyers-Ulam stability of an Euler-Lagrange type cubic functional equation. J. Computatioal analysis and app., 7(1), 21-33.

7.

(1984). . Fuzzy Sets Sys, 12, 143-154. 10.1016/0165-0114(84)90034-4.

8.

(1975). Fuzzy metric and statistical metric spaces. Kybernetica, 11, 326-334.

9.

(1994). Separation of fuzzy normed linear spaces. Fuzzy Sets and Systems, 63(2), 207-217. 10.1016/0165-0114(94)90351-4.

10.

(1968). A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Amer. Math. Soc., 126(74), 305-309.

11.

(2008). On the stability of the additive Cauchy functional equation in random normed spaces. J. Math. Anal. Appl., 343(1), 567-572. 10.1016/j.jmaa.2008.01.100.

12.

(2008). Fuzzy stability of the Jensen functional equation. Fuzzy Sets Syst, 159, 730-738. 10.1016/j.fss.2007.07.011.

13.

(2006). A fixed point approach to stability of a quadratic equation. Bull. Braz. Math. Soc., 37(3), 361-376. 10.1007/s00574-006-0016-z.

14.

(2007). Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras. Fixed Point Theory Appl, 2007.

15.

(1984). On approximation of approximately linear mappings by linear mappings. Bulletin des Sciences Mathematiques, 108(4), 445-446.

16.

(1978). On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc., 72, 297-300. 10.1090/S0002-9939-1978-0507327-1.

17.

(2003). The fixed point alternative and the stability of functional equations. Fixed Point Theory, 4(1), 91-96.

18.

Principles and Appications of Fixed Point Theory.

19.

Problems in Morden Mathematics.

20.

(1984). Fuzzy generalization of Klomogoroffs theorem. J. Harbin Inst. Technol., 1, 1-7.

21.

(2003). Fuzzy normed spaces of operators and its completeness. Fuzzy Sets and Systems, 133(3), 389-399. 10.1016/S0165-0114(02)00274-9.

22.

On the stability of the Cauchy functional equation: a fixed point approach. Iteration theory (ECIT '02); Grazer Math. Ber..

23.

(1950). On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan, 2, 64-66. 10.2969/jmsj/00210064.

24.

(2004). On the generalized Hyers-Ulam-Rassias stability in Banach modules over a C*-algebra. J. Math. Anal. Appl., 294, 196-205. 10.1016/j.jmaa.2004.02.009.

25.

(2003). Finite dimensional fuzzy normed linear spaces. J. Fuzzy Math., 11(3), 687-705.

26.

(2008). Fixed point methods for the generalized stability of functional equations in a single variable. Fixed Point Theory and Applications, 2008.

27.

(1994). Fuzzy linear operator and fuzzy normed linear spaces. Bull. Calcutta Math. Soc., 86, 429-436.

28.

(1992). On the stability of the quadratic mapping in normed spaces. Abh. Math. Sem. Univ. Hamburg, 62, 59-64. 10.1007/BF02941618.

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics