바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

A GENERALIZATION OF FUZZY SUBSEMIGROUPS IN SEMIGROUPS

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2013, v.20 no.2, pp.117-127
https://doi.org/10.7468/jksmeb.2013.20.2.117
Kang, Mee Kwang
Ban, Hee Young
Yun, Sang Wook

Abstract

As a generalization of fuzzy subsemigroups, the notion of <TEX>${\varepsilon}$</TEX>-generalized fuzzy subsemigroups is introduced, and several properties are investigated. A condition for an <TEX>${\varepsilon}$</TEX>-generalized fuzzy subsemigroup to be a fuzzy subsemigroup is considered. Characterizations of <TEX>${\varepsilon}$</TEX>-generalized fuzzy subsemigroups are established, and we show that the intersection of two <TEX>${\varepsilon}$</TEX>-generalized fuzzy subsemigroups is also an <TEX>${\varepsilon}$</TEX>-generalized fuzzy subsemigroup. A condition for an <TEX>${\varepsilon}$</TEX>-generalized fuzzy subsemigroup to be <TEX>${\varepsilon}$</TEX>-fuzzy idempotent is discussed. Using a given <TEX>${\varepsilon}$</TEX>-generalized fuzzy subsemigroup, a new <TEX>${\varepsilon}$</TEX>-generalized fuzzy subsemigroup is constructed. Finally, the fuzzy extension of an <TEX>${\varepsilon}$</TEX>-generalized fuzzy subsemigroup is considered.

keywords
<tex> ${\varepsilon}$</tex>-generalized fuzzy subsemigroup, <tex> ${\varepsilon}$</tex>-product, <tex> ${\varepsilon}$</tex>-Cartesian product, fuzzy <tex> ${\alpha}$</tex>-translation, (<tex> ${\varepsilon}_1$</tex>, <tex> ${\varepsilon}_2$</tex>)-fuzzy extension

Reference

1.

(1997). Fuzzy ideals and fuzzy bi-ideals in fuzzy semigroups. Fuzzy Sets and Systems, 92, 103-111. 10.1016/S0165-0114(96)00170-4.

2.

(2006). Generalized fuzzy interior-ideals in semigroups. Inform. Sci., 176(20), 3079-3093. 10.1016/j.ins.2005.09.002.

3.

(1995). Fuzzy interior-ideals in semigroups. Indian J. Pure Appl. Math., 26, 859-863.

4.

(2008). Generalized fuzzy bi-ideals of semigroups. Soft Computing, 12, 1119-1124. 10.1007/s00500-008-0280-5.

5.

(2009). Fuzzy ideals and semiprime fuzzy ideals in semigroups. Inform. Sci., 179, 3720-3731. 10.1016/j.ins.2009.06.026.

6.

(1979). Fuzzy hi-ideals in semigroups. Comment. Math., Univ. St. Paul., 28, 17-21.

7.

(1981). On fuzzy ideals and fuzzy bi-ideals in semigroups. Fazzy Sets and Systems, 5, 203-215. 10.1016/0165-0114(81)90018-X.

8.

(1982). Fuzzy semiprime ideals in semigroups. Fuzzy Sets and Systems, 8, 71-79. 10.1016/0165-0114(82)90031-8.

9.

(1991). On fuzzy semigroups. Inform. Sci., 53, 203-236. 10.1016/0020-0255(91)90037-U.

10.

(1993). Fuzzy semiprime quasi-ideals in semigroups. Inform. Sci., 75(3), 201-211. 10.1016/0020-0255(93)90054-P.

11.

(1993). On pointwise depiction of fuzzy regularity of semigroups. Inform. Sci., 74, 265-274. 10.1016/0020-0255(93)90099-8.

12.

Fuzzy semigroups.

13.

(2008). Lattice implication ordered semigroups. Inform. Sci., 178(2), 403-413. 10.1016/j.ins.2007.08.017.

14.

(1971). Fuzzy groups. J. Math. Anal. Appl., 35, 512-517. 10.1016/0022-247X(71)90199-5.

15.

(1999). Fuzzy ideals in semigroups. J. Fuzzy Math., 7(2), 357-365.

16.

(1965). Fuzzy sets. Inform. Control, 8, 338-353. 10.1016/S0019-9958(65)90241-X.

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics