바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

A GENERALIZATION OF FUZZY SUBSEMIGROUPS IN SEMIGROUPS

A GENERALIZATION OF FUZZY SUBSEMIGROUPS IN SEMIGROUPS

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2013, v.20 no.2, pp.117-127
https://doi.org/10.7468/jksmeb.2013.20.2.117
Kang, Mee Kwang (Department of Mathematics, Dongeui University)
Ban, Hee Young (Department of Mathematics Education, Gyeongsang National University)
Yun, Sang Wook (Department of Mathematics Education, Gyeongsang National University)

Abstract

As a generalization of fuzzy subsemigroups, the notion of <TEX>${\varepsilon}$</TEX>-generalized fuzzy subsemigroups is introduced, and several properties are investigated. A condition for an <TEX>${\varepsilon}$</TEX>-generalized fuzzy subsemigroup to be a fuzzy subsemigroup is considered. Characterizations of <TEX>${\varepsilon}$</TEX>-generalized fuzzy subsemigroups are established, and we show that the intersection of two <TEX>${\varepsilon}$</TEX>-generalized fuzzy subsemigroups is also an <TEX>${\varepsilon}$</TEX>-generalized fuzzy subsemigroup. A condition for an <TEX>${\varepsilon}$</TEX>-generalized fuzzy subsemigroup to be <TEX>${\varepsilon}$</TEX>-fuzzy idempotent is discussed. Using a given <TEX>${\varepsilon}$</TEX>-generalized fuzzy subsemigroup, a new <TEX>${\varepsilon}$</TEX>-generalized fuzzy subsemigroup is constructed. Finally, the fuzzy extension of an <TEX>${\varepsilon}$</TEX>-generalized fuzzy subsemigroup is considered.

keywords
<tex> ${\varepsilon}$</tex>-generalized fuzzy subsemigroup, <tex> ${\varepsilon}$</tex>-product, <tex> ${\varepsilon}$</tex>-Cartesian product, fuzzy <tex> ${\alpha}$</tex>-translation, (<tex> ${\varepsilon}_1$</tex>, <tex> ${\varepsilon}_2$</tex>)-fuzzy extension

참고문헌

1.

(1997). Fuzzy ideals and fuzzy bi-ideals in fuzzy semigroups. Fuzzy Sets and Systems, 92, 103-111. 10.1016/S0165-0114(96)00170-4.

2.

(2006). Generalized fuzzy interior-ideals in semigroups. Inform. Sci., 176(20), 3079-3093. 10.1016/j.ins.2005.09.002.

3.

(1995). Fuzzy interior-ideals in semigroups. Indian J. Pure Appl. Math., 26, 859-863.

4.

(2008). Generalized fuzzy bi-ideals of semigroups. Soft Computing, 12, 1119-1124. 10.1007/s00500-008-0280-5.

5.

(2009). Fuzzy ideals and semiprime fuzzy ideals in semigroups. Inform. Sci., 179, 3720-3731. 10.1016/j.ins.2009.06.026.

6.

(1979). Fuzzy hi-ideals in semigroups. Comment. Math., Univ. St. Paul., 28, 17-21.

7.

(1981). On fuzzy ideals and fuzzy bi-ideals in semigroups. Fazzy Sets and Systems, 5, 203-215. 10.1016/0165-0114(81)90018-X.

8.

(1982). Fuzzy semiprime ideals in semigroups. Fuzzy Sets and Systems, 8, 71-79. 10.1016/0165-0114(82)90031-8.

9.

(1991). On fuzzy semigroups. Inform. Sci., 53, 203-236. 10.1016/0020-0255(91)90037-U.

10.

(1993). Fuzzy semiprime quasi-ideals in semigroups. Inform. Sci., 75(3), 201-211. 10.1016/0020-0255(93)90054-P.

11.

(1993). On pointwise depiction of fuzzy regularity of semigroups. Inform. Sci., 74, 265-274. 10.1016/0020-0255(93)90099-8.

12.

Fuzzy semigroups.

13.

(2008). Lattice implication ordered semigroups. Inform. Sci., 178(2), 403-413. 10.1016/j.ins.2007.08.017.

14.

(1971). Fuzzy groups. J. Math. Anal. Appl., 35, 512-517. 10.1016/0022-247X(71)90199-5.

15.

(1999). Fuzzy ideals in semigroups. J. Fuzzy Math., 7(2), 357-365.

16.

(1965). Fuzzy sets. Inform. Control, 8, 338-353. 10.1016/S0019-9958(65)90241-X.

한국수학교육학회지시리즈B:순수및응용수학