ISSN : 1226-0657
In this paper, we study the Lie-generalized Fibonacci sequence and the root system of rank 2 symmetric hyperbolic Kac-Moody algebras. We derive several interesting properties of the Lie-Fibonacci sequence and relationship between them. We also give a couple of sufficient conditions for the existence of the integral points on the hyperbola <TEX>$\mathfrak{h}^a:x^2-axy+y^2=1$</TEX> and <TEX>$\mathfrak{h}_k:x^2-axy+y^2=-k$</TEX> (<TEX>$k{\in}\mathbb{Z}_{</TEX><TEX>></TEX><TEX>0}$</TEX>). To list all the integral points on that hyperbola, we find the number of elements of <TEX>${\Omega}_k$</TEX>.
The golden ratio and Fibonacci numbers.
(1980). A hyperbolic GCM and the Fibonacci numbers. Proc. Amer. Math. Soc., 80, 379-385. 10.1090/S0002-9939-1980-0580988-6.
(1961). A Generalized the Fibonacci Sequence. Proc. Amer. Math. Monthly, 68, 455-459. 10.2307/2311099.
Infinite-Dimensional Lie Algebras.
(1995). Rank 2 Symmetric Hyperbolic Kac-Moody Algebras. Nagoya. Math. J., 140, 41-75.
(2004). On the degree of nilpotency of certain subalgebras of Kac-Moody Lie algebras. J. Lie Theory, 14, 11-23.
(2010). A note on the rank 2 symmetric Hyperbolic Kac-Moody Lie algebras. J. KSME. SerB, 17, 107-113.
On some behavior of integral points on a hyperbola.
(1979). Root System of Hyperbolic Type. Adv. in Math., 33, 144-160. 10.1016/S0001-8708(79)80003-1.
(1980). Some remark on an identy of Catalan concerning the Fibonachi numbers. Portugale Math. Soc., 39, 341-348.
(1953). Some Properties of Fibonacci numbers. Amer. Math. Monthly, 60, 680-684. 10.2307/2307147.
(1968). A new class of Lie algebras. J. Algebra, 10, 210-230.