ISSN : 1226-0657
In this article, we study the Gauss map of generalized slant cylindrical surfaces (GSCS's) in the 3-dimensional Euclidean space <TEX>$\mathbb{E}^3$</TEX>. Surfaces of revolution, cylindrical surfaces and tubes along a plane curve are special cases of GSCS's. Our main results state that the only GSCS's with Gauss map G satisfying <TEX>${\Delta}G=AG$</TEX> for some <TEX>$3{\times}3$</TEX> matrix A are the planes, the spheres and the circular cylinders.
(1990). On the Gauss map of surfaces of revolution. Bull. Inst. Math. Acad. Sinica, 18(3), 239-246.
(1992). On the Gauss map of ruled surfaces. Glasgow Math. J., 34, 355-359. 10.1017/S0017089500008946.
(1993). Ruled surfaces and tubes with finite type Gauss map. Tokyo J. Math., 16, 341-348. 10.3836/tjm/1270128488.
Total mean curvature and submanifolds of finite type.
Finite type submanifolds and generalizations.
(2005). SURFACES OF REVOLUTION WITH POINTWISE 1-TYPE GAUSS MAP. Journal of the Korean Mathematical Society, 42(3), 447-455. 10.4134/JKMS.2005.42.3.447.
(1987). Submanifolds with finite type Gauss map. Bull. Austral. Math. Soc., 35, 161-186. 10.1017/S0004972700013162.
(2007). Hypersurfaces with pointwise 1-type Gauss map. Taiwanese J. Math., 11(5), 1407-1416.
(2010). Flat surfaces in the Euclidean space E3 with pointwise 1-type Gauss map. Bull. Malays. Math. Sci. Soc.(2), 33(3), 469-478.
(2011). SURFACES WITH POINTWISE 1-TYPE GAUSS MAP. The Pure and Applied Mathematics, 18(4), 369-377. 10.7468/jksmeb.2011.18.4.369.
(2012). SURFACES WITH POINTWISE 1-TYPE GAUSS MAP OF THE SECOND KIND. The Pure and Applied Mathematics, 19(3), 229-237. 10.7468/jksmeb.2012.19.3.229.
(2010). SURFACES WITH PLANAR LINES OF CURVATURE. Honam Mathematical Journal, 32(4), 777-790. 10.5831/HMJ.2010.32.4.777.
(2005). On the Gauss map of ruled surfaces in Minkowski space. Rocky Mountain J. Math., 35(5), 1555-1581. 10.1216/rmjm/1181069651.
(1970). The tension field of the Gauss map. Trans. Amer. Math. Soc., 149, 569-573. 10.1090/S0002-9947-1970-0259768-5.