바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

MODULAR TRIBONACCI NUMBERS BY MATRIX METHOD

MODULAR TRIBONACCI NUMBERS BY MATRIX METHOD

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2013, v.20 no.3, pp.207-221
https://doi.org/10.7468/jksmeb.2013.20.3.207
Choi, Eunmi (Department of Mathematics, Hannam University)

Abstract

In this work we study the tribonacci numbers. We find a tribonacci triangle which is an analog of Pascal triangle. We also investigate an efficient method to compute any <TEX>$n$</TEX>th tribonacci numbers by matrix method, and find periods of the sequence by taking modular tribonacci number.

keywords
Fibonacci, tribonacci sequence, period of tribonacci sequence

참고문헌

1.

(1986). Higher order Fibonacci sequence modulo M. Fibonacci Quarterly, 24(2), 138-139.

2.

(1970). A Generalized Fibonacci sequence over an arbitrary ring. Fibonacci Quarterly, 8(2), 182-184.

3.

(1989). On the periods of the Fibonacci sequence modulo M. Fibonacci Quarterly, 27(1), 11-13.

4.

(2005). Fibonacci sequences in groups. Irish Math. Soc. Bulletin, 56, 81-85.

5.

(1982). Generalized Fibonacci numbers by matrix method. Fibonacci Quarterly, 20(1), 73-76.

6.

(2008). Tribonacci sequences with certain indices and their sums. Ars. Combinatorics, 86, 13-22.

7.

(2013). Some double binomial sums related to Fibonacci, Pell and generalized ordered k-Fibonacci numbers. Rocky Mountain J. Math., 43(3), 975-987. 10.1216/RMJ-2013-43-3-975.

8.

(1960). Fibonacci series modulo m. Amer. Math. Monthly, 67, 525-532. 10.2307/2309169.

9.

(1986). Fibonacci sequences of period n in groups. Fibonacci Quarterly, 24(4), 356-361.

한국수학교육학회지시리즈B:순수및응용수학