ISSN : 1226-0657
Let A be an algebra and D a derivation of A. Then D is called algebraic nil if for any <TEX>$x{\in}A$</TEX> there is a positive integer n = n(x) such that <TEX>$D^{n(x)}(P(x))=0$</TEX>, for all <TEX>$P{\in}\mathbb{C}[X]$</TEX> (by convention <TEX>$D^{n(x)}({\alpha})=0$</TEX>, for all <TEX>${\alpha}{\in}\mathbb{C}$</TEX>). In this paper, we show that any algebraic nil derivation (possibly unbounded) on a commutative complex algebra A maps into N(A), where N(A) denotes the set of all nilpotent elements of A. As an application, we deduce that any nilpotent derivation on a commutative complex algebra A maps into N(A), Finally, we deduce two noncommutative versions of algebraic nil derivations inclusion range.
Positive Operators.
(2010). On orthosymmetric bilinear maps. Positivity, 14(1), 123-134. 10.1007/s11117-009-0009-4.
(1990). Almost f-algebras and d-algebras (287-308). Math. Proc. Cam. Phil. Soc..
(2002). Positive Derivations on Almost f-rings. Order, 19, 385-395. 10.1023/A:1022869819129.
(1994). Derivations of noncommutative Banach algebras II. Arch. Math., 63, 56-59. 10.1007/BF01196299.
(1985). Nil derivations. J. Algebra, 95, 20-30. 10.1016/0021-8693(85)90089-4.
(1984). Nilpotency of derivations on an ideal (211-214). Proc. Amer. Math. Soc..
(1985). Nil derivations and chain conditions in prime rings (201-205). Proc. Amer. Math. Soc..
(1977). Positive derivations on f-rings. J. Austral. Math. Soc., 23, 371-375. 10.1017/S1446788700019017.
(1991). The range of derivations on noncommutative Banach algebras. Bull. Korean Math. Soc., 28, 65-68.
(1992). Derivations mapping into the radical II. Bull. London Math. Soc., 24, 485-487. 10.1112/blms/24.5.485.
(1955). Derivations on commutative normed algebras. Math. Ann., 129, 260-264. 10.1007/BF01362370.
(1988). The image of a derivations contained in the radical. Ann. of Math., 128, 435-460. 10.2307/1971432.
(2010). Order bounded derivations on Archimedean almost f-algebras. Positivity, 14(2), 239-245. 10.1007/s11117-009-0013-8.
(1992). On derivations in prime rings and Banach algebras (877-884). Proc. Amer. Math. Soc..