바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

SCALAR CURVATURE DECREASE FROM A HYPERBOLIC METRIC

SCALAR CURVATURE DECREASE FROM A HYPERBOLIC METRIC

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2013, v.20 no.4, pp.269-276
https://doi.org/10.7468/jksmeb.2013.20.4.269
Kang, Yutae (Department of Mathematics, Sogang University)
Kim, Jongsu (Department of Mathematics, Sogang University)

Abstract

We find an explicit <TEX>$C^{\infty}$</TEX>-continuous path of Riemannian metrics <TEX>$g_t$</TEX> on the 4-d hyperbolic space <TEX>$\mathbb{H}^4$</TEX>, for <TEX>$0{\leq}t{\leq}{\varepsilon}$</TEX> for some number <TEX>${\varepsilon}$</TEX> > 0 with the following property: <TEX>$g_0$</TEX> is the hyperbolic metric on <TEX>$\mathbb{H}^4$</TEX>, the scalar curvatures of <TEX>$g_t$</TEX> are strictly decreasing in t in an open ball and <TEX>$g_t$</TEX> is isometric to the hyperbolic metric in the complement of the ball.

keywords
scalar curvature decrease, scalar curvature functional

참고문헌

1.

(2005). KIDs are non-generic. Ann. Henri Poincare, 6, 155-194. 10.1007/s00023-005-0202-3.

2.

Einstein manifolds;Ergebnisse der Mathematik, 3 Folge, Band 10.

3.

(2000). Scalar curvature deformation and a gluing construction for the Einstein constraint equations. Comm. Math. Phys., 214, 137-189. 10.1007/PL00005533.

4.

Kang, Yu-Tae;Kim, Jong-Su;Kwak, Se-Ho;. (2012). MELTING OF THE EUCLIDEAN METRIC TO NEGATIVE SCALAR CURVATURE IN 3 DIMENSION. Bulletin of the Korean Mathematical Society, 49(3), 581-588. 10.4134/BKMS.2012.49.3.581.

5.

Kim, Jongsu;. (2013). MELTING OF THE EUCLIDEAN METRIC TO NEGATIVE SCALAR CURVATURE. Bulletin of the Korean Mathematical Society, 50(4), 1087-1098. 10.4134/BKMS.2013.50.4.1087.

6.

(1995). Curvature h-principles. Ann. of Math., 142(2), 457-498. 10.2307/2118552.

한국수학교육학회지시리즈B:순수및응용수학