바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

X-LIFTING MODULES OVER RIGHT PERFECT RINGS

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2014, v.21 no.2, pp.95-103
https://doi.org/10.7468/jksmeb.2014.21.2.95
Shin, Jong Moon (Department of Mathematics, Dongguk University)
Chang, Chae-Hoon (Department of Mathematics, Dongguk University)

Abstract

Keskin and Harmanci defined the family <TEX>$\mathcal{B}(M,X)=\{A{\leq}M{\mid}{\exists}Y{\leq}x,{\exists}f{\in}Hom_R(M,X/Y),Ker\;f/A{\ll}M/A\}$</TEX>. And Orhan and Keskin generalized projective modules via the class <TEX>$\mathcal{B}$</TEX>(M,X). In this note we introduce X-local summands and X-hollow modules via the class <TEX>$\mathcal{B}$</TEX>(M,X). Let R be a right perfect ring and let M be an X-lifting module. We prove that if every co-closed submodule of any projective module contains its radical, then M has an indecomposable decomposition. This result is a generalization of Kuratomi and Chang's result [9, Theorem 3.4]. Let X be an R-module. We also prove that for an X-hollow module H such that every non-zero direct summand K of H with <TEX>$K{\in}\mathcal{B}(H,X)$</TEX>, if <TEX>$H{\oplus}H$</TEX> has the internal exchange property, then H has a local endomorphism ring.

keywords

한국수학교육학회지시리즈B:순수및응용수학