바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

CENTRAL LIMIT THEOREM ON CHEBYSHEV POLYNOMIALS

Central limit theorem on Chebyshev polynomials

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2014, v.21 no.4, pp.271-279
https://doi.org/10.7468/jksmeb.2014.21.4.271
Ahn, Young-Ho (Department of Mathematics, Mokpo National University)

Abstract

Let <TEX>$T_l$</TEX> be a transformation on the interval [-1, 1] defined by Chebyshev polynomial of degree <TEX>$l(l{\geq}2)$</TEX>, i.e., <TEX>$T_l(cos{\theta})=cos(l{\theta})$</TEX>. In this paper, we consider <TEX>$T_l$</TEX> as a measure preserving transformation on [-1, 1] with an invariant measure <TEX>$\frac{1}{\sqrt[\pi]{1-x^2}}dx$</TEX>. We show that If f(x) is a nonconstant step function with finite k-discontinuity points with k < l-1, then it satisfies the Central Limit Theorem. We also give an explicit method how to check whether it satisfies the Central Limit Theorem or not in the cases of general step functions with finite discontinuity points.

keywords
Chebyshev polynomials, the central limit theorem, measure preserving, ergodic, weakly mixing, bounded variation function

참고문헌

1.

R.L. Adler & M.H. McAndrew. (1966). The entropy of Chebyshev polynomials. Trans. Amer. Math. Soc., 121, 236-241. 10.1090/S0002-9947-1966-0189005-0.

2.

A. Boyarsky & P. Gora. Laws of Chaos.

3.

G.H. Choe. Computational Ergodic Theory.

4.

W. Rudin. Real and Complex Analysis.

5.

P. Walters. An Introduction to Ergodic Theory.

한국수학교육학회지시리즈B:순수및응용수학