ISSN : 1226-0657
In this paper, we investigate h-stability and boundedness for solutions of the functional perturbed differential systems using the notion of t<sub>∞</sub>-similarity.
Goo, Y.H.;. (2013). Boundedness in perturbed nonlinear differential systems. J. Chungcheong Math. Soc., 26, 605-613. 10.14403/jcms.2013.26.3.605.
Goo, Y.H.;. Boundedness in nonlinear functional perturbed differential systems.
Goo, Y.H.;. (2013). Boundedness in the perturbed nonlinear differential systems. Far East J. Math. Sci(FJMS), 79, 205-217.
Goo, Y.H.;. h-stability and boundedness in the perturbed functional differential systems.
Goo, Y.H.;Park, D.G.;Ryu, D.H.;. (2012). Boundedness in perturbed differential systems. J. Appl. Math. and Informatics, 30, 279-287.
Hewer, G.A.;. (1973). Stability properties of the equation by t∞-similarity. J. Math. Anal. Appl., 41, 336-344. 10.1016/0022-247X(73)90209-6.
Lakshmikantham, V.;Leela, S.;. Theory and Applications;Differential and Integral Inequalities.
Pachpatte, B.G.;. (2002). On some retarded inequalities and applications. J. Ineq. Pure Appl. Math., 3, 1-7.
Pinto, M.;. (1988). Asymptotic integration of a system resulting from the perturbation of an h-system. J. Math. Anal. Appl., 131, 194-216. 10.1016/0022-247X(88)90200-4.
Pinto, M.;. (1992). Stability of nonlinear differential systems. Applicable Analysis, 43, 1-20. 10.1080/00036819208840049.
Choi, S.K.;Koo, N.J.;Song, S.M.;. (1999). Lipschitz stability for nonlinear functional differential systems. Far East J. Math. Sci(FJMS), I(5), 689-708.
Alekseev, V.M.;. (1961). An estimate for the perturbations of the solutions of ordinary differential equations. Vestn. Mosk. Univ. Ser. I. Math. Mekh., 2, 28-36.
Choi, S.K.;Ryu, H.S.;. (1993). h-stability in differential systems. Bull. Inst. Math. Acad. Sinica, 21, 245-262.
Choi, S. K.;Koo, N.J.;Ryu, H.S.;. (1997). h-stability of differential systems via t∞-similarity. Bull. Korean. Math. Soc., 34, 371-383.
Conti, R.;. (1957). t∞-similitudine tra matricie l'equivalenza asintotica dei sistemi differenziali lineari. Rivista di Mat. Univ. Parma, 8, 43-47.
Goo, Y.H.;. (2012). h-stability of perturbed differential systems via t∞-similarity. J. Appl. Math. and Informatics, 30, 511-516.