ISSN : 1226-0657
Abstract. We propose a fast and robust finite difference method for Merton's jump diffusion model, which is a partial integro-differential equation. To speed up a computational time, we compute a matrix so that we can calculate the non-local integral term fast by a simple matrix-vector operation. Also, we use non-uniform grids to increase efficiency. We present numerical experiments such as evaluation of the option prices and Greeks to demonstrate a performance of the proposed numerical method. The computational results are in good agreements with the exact solutions of the jump-diffusion model.
Carr, P.;Cousot, L.;. (2011). A PDE approach to jump-diffusions. Quant. Fin., 11(1), 33-52. 10.1080/14697688.2010.531042.
Cheang, G.;Chiarella, C.;. (2011). A modern view on Merton's jump-diffusion model. Quant. Fin. Res. Cent., 287.
Duffy, D.J.;. Finite Difference methods in financial engineering: a Partial Differential Equation approach.
Feng, L.;Linetsky, V.;. (2008). Pricing options in jump-diffusion models: an extrapolation approach. Oper. Res., 56(2), 304-325. 10.1287/opre.1070.0419.
Kremer, J.W.;Roenfeldt, R.L.;. (1993). Warrant pricing: jump-diffusion vs. Black-Scholes. J. Finan. Quant. Anal., 28(2), 255-272. 10.2307/2331289.
Kwon, Y.H.;Lee, Y.;. (2011). A second-order finite difference method for option pricing under jump-diffusion models. SIAM J. Numer. Anal., 49(6), 2598-2617. 10.1137/090777529.
Tankov, P.;. Financial modelling with jump processes.
Lee, S.;Li, Y.;Choi, Y.;Hwang, H.;Kim, J.;. (2014). Accurate and efficient computations for the Greeks of European multi-asset options. J. KSIAM, 18(1), 61-74.
Merton, R.C.;. (1976). Option pricing when underlying stock returns are discontinuous. J. Polit. Econ., 3(1), 125-144.
Using MATLAB.
Windcliff, H.;Forsyth, P.A.;Vetzal, K.R.;. (2004). Analysis of the stability of the linear boundary condition for the Black-Scholes equation. J. Comput. Fin., 8, 65-92.
Black, F.;Scholes, M.;. (1973). The pricing of options and corporate liabilities. J. Polit. Econ., 81, 637-654. 10.1086/260062.
Briani, M.;Natalini, R.;Russo, G.;. (2007). Implicit-explicit numerical schemes for jump-diffusion processes. Calcolo, 44(1), 33-57. 10.1007/s10092-007-0128-x.