바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

A NOTE ON CONNECTEDNESS IM KLEINEN IN C(X)

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2015, v.22 no.2, pp.139-144
https://doi.org/10.7468/jksmeb.2015.22.2.139
BAIK, BONG SHIN
RHEE, CHOON JAI

Abstract

Abstract. In this paper, we investigate the relationships between the space X and the hyperspace C(X) concerning admissibility and connectedness im kleinen. The following results are obtained: Let X be a Hausdorff continuum, and let A ∈ C(X). (1) If for each open set U containing A there is a continuum K and a neighborhood V of a point of A such that V ⊂ IntK ⊂ K ⊂ U, then C(X) is connected im kleinen. at A. (2) If IntA ≠ ø, then for each open set U containing A there is a continuum K and a neighborhood V of a point of A such that V ⊂ IntK ⊂ K ⊂ U. (3) If X is connected im kleinen. at A, then A is admissible. (4) If A is admissible, then for any open subset U of C(X) containing A, there is an open subset V of X such that A ⊂ V ⊂ ∪U. (5) If for any open subset U of C(X) containing A, there is a subcontinuum K of X such that A ∈ IntK ⊂ K ⊂ U and there is an open subset V of X such that A ⊂ V ⊂ ∪ IntK, then A is admissible.

keywords
hyperspace, connected im kleinen, admissible

Reference

1.

Michael, E.;. (1951). Topologies on spaces of subsets. Trans. Amer. Math. Soc., 71, 152-182. 10.1090/S0002-9947-1951-0042109-4.

2.

Makuchowski, W.;. (1999). On Local Connectedness in Hyperspaces. Bull. Polish. Acad. Sci. Math., 47(2), 119-126.

3.

Makuchowski, W.;. (2003). On Local Connectedness at a Subcontinuum and Smoothness of Continua. Houston J. Math., 4(3), 711-716.

4.

Rhee, C.J.;. (1985). Obstucting sets for hyperspace (159-173). Topology Proceedings.

5.

Whyburn, G.T.;. Analytic topology.

6.

Wojdyslawski, M.;. (1939). Retract absolus et hyperespaces des continus. Fund. Math., 32, 184-192.

7.

Goodykoontz, J.T.;. (1977). More on connectedness im kleinen and Local Connectedness in C(X). Proc. Amer. Math. Soc., 65, 357-364.

8.

Bennett, D.E.;Fugate, J.B.;. (1977). Continua and their non-separating subcontinua. Dissertationes Math. Rozprawy Mat., 149, 1-46.

9.

Czuba, S.T.;. (1979). R-continua and contractibility of dendroids. Bull. Acad. Polon. Sci., Ser. Sci. Math., 27, 299-302.

10.

Goodykoontz, J.T.;. (1974). Connectedness im kleinen and local connectedness in 2X and C(X). Pacific J. Math., 53, 387-397. 10.2140/pjm.1974.53.387.

11.

Goodykoontz, J.T.;. (1978). Local arcwise connectedness in 2X and C(X). Houston J. Math., 4, 41-47.

12.

Goodykoontz, J.T.;. (1998). Local properties of hyperspaces (183-200). Topology Proceedings.

13.

Goodykoontz, J.T.;Rhee, C.J.;. Topology.

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics