ISSN : 1226-0657
In this paper, a boundary version of Carathéodory’s inequality is investigated. Also, new inequalities of the Carathéodory’s inequality at boundary are obtained and the sharpness of these inequalities is proved.
Jeong, M.;. (2011). The Schwarz lemma and boundary fixed points. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math., 18(3), 219-227.
Dubinin, V.N.;. (2004). The Schwarz inequality on the boundary for functions regular in the disc. J. Math. Sci., 122(6), 3623-3629. 10.1023/B:JOTH.0000035237.43977.39.
Golusin, G.M.;. Geometric Theory of Functions of Complex Variable.
Jeong, M.;. (2014). The Schwarz lemma and its applications at a boundary point. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math., 21(3), 275-284.
Burns, D.M.;Krantz, S.G.;. (1994). Rigidity of holomorphic mappings and a new Schwarz Lemma at the boundary. J. Amer. Math. Soc., 7, 661-676. 10.1090/S0894-0347-1994-1242454-2.
Kresin, G.;Maz’ya, V.;. Lecture Notes in Mathematics, 1903;Sharp real-part theorems. A unified approach.
Pommerenke, Ch.;. Boundary Behaviour of Conformal Maps.
Osserman, R.;. (2000). A sharp Schwarz inequality on the boundary (3513-3517). Proc. Amer. Math. Soc.. 10.1090/S0002-9939-00-05463-0.
Aliyev Azeroğlu, T.;Örnek, B.N.;. (2013). A refined Schwarz inequality on the boundary. Complex Variables and Elliptic Equations, 58(4), 571-577. 10.1080/17476933.2012.718338.
Örnek, B. N.;. (2013). Sharpened forms of the Schwarz lemma on the boundary. Bull. Korean Math. Soc., 50(6), 2053-2059. 10.4134/BKMS.2013.50.6.2053.
Boas, H.P.;. (2010). Julius and Julia: Mastering the Art of the Schwarz lemma. Amer. Math. Monthly, 117, 770-785. 10.4169/000298910X521643.