바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

CARATHÉODORY'S INEQUALITY ON THE BOUNDARY

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2015, v.22 no.2, pp.169-178
https://doi.org/10.7468/jksmeb.2015.22.2.169
NAFI ORNEK, BULENT

Abstract

In this paper, a boundary version of Carathéodory’s inequality is investigated. Also, new inequalities of the Carathéodory’s inequality at boundary are obtained and the sharpness of these inequalities is proved.

keywords
Schwarz lemma on the boundary, Carath&eacute, odory’s inequality, Angular limit and derivative, Julia-Wolff-Lemma.

Reference

1.

Jeong, M.;. (2011). The Schwarz lemma and boundary fixed points. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math., 18(3), 219-227.

2.

Dubinin, V.N.;. (2004). The Schwarz inequality on the boundary for functions regular in the disc. J. Math. Sci., 122(6), 3623-3629. 10.1023/B:JOTH.0000035237.43977.39.

3.

Golusin, G.M.;. Geometric Theory of Functions of Complex Variable.

4.

Jeong, M.;. (2014). The Schwarz lemma and its applications at a boundary point. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math., 21(3), 275-284.

5.

Burns, D.M.;Krantz, S.G.;. (1994). Rigidity of holomorphic mappings and a new Schwarz Lemma at the boundary. J. Amer. Math. Soc., 7, 661-676. 10.1090/S0894-0347-1994-1242454-2.

6.

Kresin, G.;Maz’ya, V.;. Lecture Notes in Mathematics, 1903;Sharp real-part theorems. A unified approach.

7.

Pommerenke, Ch.;. Boundary Behaviour of Conformal Maps.

8.

Osserman, R.;. (2000). A sharp Schwarz inequality on the boundary (3513-3517). Proc. Amer. Math. Soc.. 10.1090/S0002-9939-00-05463-0.

9.

Aliyev Azeroğlu, T.;Örnek, B.N.;. (2013). A refined Schwarz inequality on the boundary. Complex Variables and Elliptic Equations, 58(4), 571-577. 10.1080/17476933.2012.718338.

10.

Örnek, B. N.;. (2013). Sharpened forms of the Schwarz lemma on the boundary. Bull. Korean Math. Soc., 50(6), 2053-2059. 10.4134/BKMS.2013.50.6.2053.

11.

Boas, H.P.;. (2010). Julius and Julia: Mastering the Art of the Schwarz lemma. Amer. Math. Monthly, 117, 770-785. 10.4169/000298910X521643.

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics