ISSN : 1226-0657
The purpose of this paper is to obtain Opial-type inequalities that are useful to study various qualitative properties of certain differential equations involving impulses. After we obtain some Opial-type inequalities, we apply our results to certain differential equations involving impulses.
Schwabik, Š.;. Generalized ordinary differential equations.
Samoilenko, A.M.;Perestyuk, N.A.;. Impulsive differential equations.
Pfeffer, W.F.;. The Riemann approach to integration: local geometric theory.
Krejčí, P.;Kurzweil, J.;. (2002). A nonexistence result for the Kurzweil integral. Math. Bohem., 127, 571-580.
Kim, Y.J.;. (2014). Stieltjes derivative method for integral inequalities with impulses. J. Korean Soc. Math. Educ.Ser. B: Pure Appl. Math., 21(1), 61-75.
Kim, Y.J.;. (2011). Stieltjes derivatives and its applications to integral inequalities of Stieltjes type. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math., 18(1), 63-78.
Hönig, C.S.;. Volterra Stieltjes-integral equations.
Henstock, R.;. Lectures on the theory of integration.
Agarwal, R.P.;Pang, P.Y.H.;. Opial inequalities with applications in differential anddifference equations.
Tvrdý, M.;. (1989). Regulated functions and the Perron-Stieltjes integral. Časopis pešt. mat., 114(2), 187-209.
Schwabik, Š.;Tvrdý, M.;Vejvoda, O.;. Differntial and integral equations: boundary value problems and adjoints.