바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

FIXED POINTS AND ADDITIVE -FUNCTIONAL EQUATIONS IN BANACH SPACES

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2015, v.22 no.4, pp.365-374
https://doi.org/10.7468/jksmeb.2015.22.4.365
CHOI, YONG HOON
YUN, SUNGSIK
  • Downloaded
  • Viewed

Abstract

In this paper, we solve the additive ρ-functional equations

keywords
Hyers-Ulam stability, additive ρ-functional equation, fixed point, Banach space

Reference

1.

Isac, G.;Rassias, Th. M.;. (1996). Stability of ψ-additive mappings: Appications to nonlinear analysis. Internat. J. Math. Math. Sci., 19, 219-228. 10.1155/S0161171296000324.

2.

D.H., Hyers;. (1941). On the stability of the linear functional equation. Proc. Natl. Acad. Sci. U.S.A., 27, 222-224. 10.1073/pnas.27.4.222.

3.

Găvruta, P.;. (1994). A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl., 184, 431-43. 10.1006/jmaa.1994.1211.

4.

Diaz, J.;Margolis, B.;. (1968). A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Amer. Math. Soc., 74, 305-309. 10.1090/S0002-9904-1968-11933-0.

5.

Cădariu, L.;Radu, V.;. (2008). Fixed point methods for the generalized stability of functional equations in a single variable. Fixed Point Theory and Applications, 2008.

6.

Cădariu, L.;Radu, V.;. (2004). On the stability of the Cauchy functional equation: a fixed point approach. Grazer Math. Ber., 346(1), 43-52.

7.

Cădariu, L.;Radu, V.;. (2003). Fixed points and the stability of Jensen’s functional equation. J. Inequal. Pure Appl. Math., 4(1).

8.

Aoki, T.;. (1950). On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan, 2, 64-66. 10.2969/jmsj/00210064.

9.

Ulam, S.M.;. A Collection of the Mathematical Problems.

10.

Rassias, Th.M.;. (1978). On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc., 72, 297-300. 10.1090/S0002-9939-1978-0507327-1.

11.

Radu, V.;. (2003). The fixed point alternative and the stability of functional equations. Fixed Point Theory, 4, 91-96.

12.

Park, C.;. (2008). Generalized Hyers-Ulam-Rassias stability of quadratic functional equations: a fixed point approach. Fixed Point Theory and Applications, 2008.

13.

Park, C.;. (2007). Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras. Fixed Point Theory and Applications, 2007.

14.

Miheƫ, D.;Radu, V.;. (2008). On the stability of the additive Cauchy functional equation in random normed spaces. J. Math. Anal. Appl., 343, 567-572. 10.1016/j.jmaa.2008.01.100.

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics