바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

HUGE CONTRACTION ON PARTIALLY ORDERED METRIC SPACES

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2016, v.23 no.1, pp.35-51
https://doi.org/10.7468/jksmeb.2016.23.1.35
DESHPANDE, BHAVANA
HANDA, AMRISH
KOTHARI, CHETNA

Abstract

We establish coincidence point theorem for g-nondecreasing mappings satisfying generalized nonlinear contraction on partially ordered metric spaces. We also obtain the coupled coincidence point theorem for generalized compatible pair of mappings F, G : X<sup>2</sup> &#x2192; X by using obtained coincidence point results. Furthermore, an example is also given to demonstrate the degree of validity of our hypothesis. Our results generalize, modify, improve and sharpen several well-known results.

keywords
coincidence point, coupled coincidence point, generalized nonlinear contraction, partially ordered metric space, O-compatible, generalized compatibility, g-nondecreasing mapping, mixed monotone mapping, commuting mapping

Reference

1.

Agarwal, R.P.;Bisht, R.K.;Shahzad, N.;. (2014). A comparison of various noncommuting conditions in metric fixed point theory and their applications. Fixed Point Theory Appl., .

2.

Bhaskar, T.G.;Lakshmikantham, V.;. (2006). Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal., 65(7), 1379-1393. 10.1016/j.na.2005.10.017.

3.

Choudhury, B.S.;Kundu, A.;. (2010). A coupled coincidence point results in partially ordered metric spaces for compatible mappings. Nonlinear Anal., 73, 2524-2531. 10.1016/j.na.2010.06.025.

4.

Deshpande, B.;Handa, A.;. (2015). Nonlinear mixed monotone-generalized contractions on partially ordered modified intuitionistic fuzzy metric spaces with application to integral equations. Afr. Mat., 26(3-4), 317-343. 10.1007/s13370-013-0204-0.

5.

Deshpande, B.;Handa, A.;. (2014). Application of coupled fixed point technique in solving integral equations on modified intuitionistic fuzzy metric spaces. Adv. Fuzzy Syst., .

6.

Ding, H.S.;Li, L.;Radenovic, S.;. (2012). Coupled coincidence point theorems for generalized nonlinear contraction in partially ordered metric spaces. Fixed Point Theory Appl., , 96.

7.

Erhan, I.M.;Karapınar, E.;Roldan, A.;Shahzad, N.;. (2014). Remarks on coupled coincidence point results for a generalized compatible pair with applications. Fixed Point Theory Appl., , 207.

8.

Goebel, K.;. (1968). A coincidence theorem. Bull. Acad. Pol. Sci., Ser. Sci. Math. Astron. Phys., 16, 733-735.

9.

Guo, D.;Lakshmikantham, V.;. (1987). Coupled fixed points of nonlinear operators with applications. Nonlinear Anal., 11(5), 623-632. 10.1016/0362-546X(87)90077-0.

10.

Hung, N.M.;Karapınar, E.;Luong, N.V.;. (2012). Coupled coincidence point theorem for O-compatible mappings via implicit relation. Abstr. Appl. Anal., .

11.

Hussain, N.;Abbas, M.;Azam, A.;Ahmad, J.;. (2014). Coupled coincidence point results for a generalized compatible pair with applications. Fixed Point Theory Appl., , 62.

12.

Karapınar, E.;Roldan, A.;. (2013). A note on n-Tuplet fixed point theorems for contractive type mappings in partially ordered metric spaces. J. Inequal. Appl., .

13.

Karapınar, E.;Roldan, A.;Roldan, C.;Martinez-Moreno, J.;. (2013). A note on N-Fixed point theorems for nonlinear contractions in partially ordered metric spaces. Fixed Point Theory Appl., .

14.

Karapinar, E.;Roldan, A.;Shahzad, N.;Sintunavarat, W.;. (2014). Discussion on coupled and tripled coincidence point theorems for &#x3D5;−contractive mappings without the mixed g-monotone property. Fixed Point Theory Appl., .

15.

Lakshmikantham, V.;Ciric, L.;. (2009). Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal., 70(12), 4341-4349. 10.1016/j.na.2008.09.020.

16.

Luong, N.V.;Thuan, N.X.;. (2011). Coupled fixed points in partially ordered metric spaces and application. Nonlinear Anal., 74, 983-992. 10.1016/j.na.2010.09.055.

17.

Luong, N.V.;Thuan, N.X.;. (2011). Coupled points in ordered generalized metric spaces and application to integro-differential equations. Comput. Math. Appl., 62(11), 4238-4248. 10.1016/j.camwa.2011.10.011.

18.

Al-Mezel, S.A.;Alsulami, H.;Karapinar, E.;Roldan, A.;. (2014). Discussion on multidimensional coincidence points via recent publications. Abstr. Appl. Anal., .

19.

Roldan, A.;Martinez-Moreno, J.;Roldan, C.;Karapinar, E.;. (2013). Some remarks on multi-dimensional fixed point theorems. Fixed Point Theory Appl., .

20.

Samet, B.;Karapinar, E.;Aydi, H.;Rajic, V.C.;. (2013). Discussion on some coupled fixed point theorems. Fixed Point Theory Appl., , 50.

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics