바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

HUGE CONTRACTION ON PARTIALLY ORDERED METRIC SPACES

HUGE CONTRACTION ON PARTIALLY ORDERED METRIC SPACES

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2016, v.23 no.1, pp.35-51
https://doi.org/10.7468/jksmeb.2016.23.1.35
DESHPANDE, BHAVANA (DEPARTMENT OF MATHEMATICS, GOVT. ARTS & SCIENCE P. G. COLLEGE)
HANDA, AMRISH (DEPARTMENT OF MATHEMATICS, GOVT. P. G. ARTS AND SCIENCE COLLEGE)
KOTHARI, CHETNA (DEPARTMENT OF MATHEMATICS, GOVT. P. G. COLLEGE)

Abstract

We establish coincidence point theorem for g-nondecreasing mappings satisfying generalized nonlinear contraction on partially ordered metric spaces. We also obtain the coupled coincidence point theorem for generalized compatible pair of mappings F, G : X<sup>2</sup> &#x2192; X by using obtained coincidence point results. Furthermore, an example is also given to demonstrate the degree of validity of our hypothesis. Our results generalize, modify, improve and sharpen several well-known results.

keywords
coincidence point, coupled coincidence point, generalized nonlinear contraction, partially ordered metric space, O-compatible, generalized compatibility, g-nondecreasing mapping, mixed monotone mapping, commuting mapping

참고문헌

1.

Agarwal, R.P.;Bisht, R.K.;Shahzad, N.;. (2014). A comparison of various noncommuting conditions in metric fixed point theory and their applications. Fixed Point Theory Appl., .

2.

Bhaskar, T.G.;Lakshmikantham, V.;. (2006). Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal., 65(7), 1379-1393. 10.1016/j.na.2005.10.017.

3.

Choudhury, B.S.;Kundu, A.;. (2010). A coupled coincidence point results in partially ordered metric spaces for compatible mappings. Nonlinear Anal., 73, 2524-2531. 10.1016/j.na.2010.06.025.

4.

Deshpande, B.;Handa, A.;. (2015). Nonlinear mixed monotone-generalized contractions on partially ordered modified intuitionistic fuzzy metric spaces with application to integral equations. Afr. Mat., 26(3-4), 317-343. 10.1007/s13370-013-0204-0.

5.

Deshpande, B.;Handa, A.;. (2014). Application of coupled fixed point technique in solving integral equations on modified intuitionistic fuzzy metric spaces. Adv. Fuzzy Syst., .

6.

Ding, H.S.;Li, L.;Radenovic, S.;. (2012). Coupled coincidence point theorems for generalized nonlinear contraction in partially ordered metric spaces. Fixed Point Theory Appl., , 96.

7.

Erhan, I.M.;Karapınar, E.;Roldan, A.;Shahzad, N.;. (2014). Remarks on coupled coincidence point results for a generalized compatible pair with applications. Fixed Point Theory Appl., , 207.

8.

Goebel, K.;. (1968). A coincidence theorem. Bull. Acad. Pol. Sci., Ser. Sci. Math. Astron. Phys., 16, 733-735.

9.

Guo, D.;Lakshmikantham, V.;. (1987). Coupled fixed points of nonlinear operators with applications. Nonlinear Anal., 11(5), 623-632. 10.1016/0362-546X(87)90077-0.

10.

Hung, N.M.;Karapınar, E.;Luong, N.V.;. (2012). Coupled coincidence point theorem for O-compatible mappings via implicit relation. Abstr. Appl. Anal., .

11.

Hussain, N.;Abbas, M.;Azam, A.;Ahmad, J.;. (2014). Coupled coincidence point results for a generalized compatible pair with applications. Fixed Point Theory Appl., , 62.

12.

Karapınar, E.;Roldan, A.;. (2013). A note on n-Tuplet fixed point theorems for contractive type mappings in partially ordered metric spaces. J. Inequal. Appl., .

13.

Karapınar, E.;Roldan, A.;Roldan, C.;Martinez-Moreno, J.;. (2013). A note on N-Fixed point theorems for nonlinear contractions in partially ordered metric spaces. Fixed Point Theory Appl., .

14.

Karapinar, E.;Roldan, A.;Shahzad, N.;Sintunavarat, W.;. (2014). Discussion on coupled and tripled coincidence point theorems for &#x3D5;−contractive mappings without the mixed g-monotone property. Fixed Point Theory Appl., .

15.

Lakshmikantham, V.;Ciric, L.;. (2009). Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal., 70(12), 4341-4349. 10.1016/j.na.2008.09.020.

16.

Luong, N.V.;Thuan, N.X.;. (2011). Coupled fixed points in partially ordered metric spaces and application. Nonlinear Anal., 74, 983-992. 10.1016/j.na.2010.09.055.

17.

Luong, N.V.;Thuan, N.X.;. (2011). Coupled points in ordered generalized metric spaces and application to integro-differential equations. Comput. Math. Appl., 62(11), 4238-4248. 10.1016/j.camwa.2011.10.011.

18.

Al-Mezel, S.A.;Alsulami, H.;Karapinar, E.;Roldan, A.;. (2014). Discussion on multidimensional coincidence points via recent publications. Abstr. Appl. Anal., .

19.

Roldan, A.;Martinez-Moreno, J.;Roldan, C.;Karapinar, E.;. (2013). Some remarks on multi-dimensional fixed point theorems. Fixed Point Theory Appl., .

20.

Samet, B.;Karapinar, E.;Aydi, H.;Rajic, V.C.;. (2013). Discussion on some coupled fixed point theorems. Fixed Point Theory Appl., , 50.

한국수학교육학회지시리즈B:순수및응용수학