바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

INITIAL SOFT L-FUZZY PREPROXIMITIES

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2016, v.23 no.2, pp.119-130
https://doi.org/10.7468/jksmeb.2016.23.2.119
KIM, YOUNG SUN
KIM, YONG CHAN

Abstract

In this paper, we introduce the notions of soft L-fuzzy preproximities in complete residuated lattices. We prove the existence of initial soft L-fuzzy preproximities. From this fact, we define subspaces and product spaces for soft L-fuzzy preproximity spaces. Moreover, we give their examples.

keywords
complete residuated lattices, (initial) soft L-preproximities, fuzzy proximity soft maps

Reference

1.

Babitha, K.V.;Sunil, J.J.;. (2010). Soft set relations and functions. Compu. Math. Appl., 60, 1840-1849. 10.1016/j.camwa.2010.07.014.

2.

Cagman, N.;Karatas, S.;Enginoglu, S.;. (2011). Soft topology. Comput. Math. Appl., 62(1), 351-358. 10.1016/j.camwa.2011.05.016.

3.

Čimoka, D.;Šostak, A.P.;. (2013). L-fuzzy syntopogenous structures, Part I: Fundamentals and application to L-fuzzy topologies, L-fuzzy proximities and L-fuzzy uniformities. Fuzzy Sets and Systems, 232, 74-97. 10.1016/j.fss.2013.04.009.

4.

Feng, F.;Liu, X.;Fotea, V.L.;Jun, Y.B.;. (2011). Soft sets and soft rough sets. Information Sciences, 181, 1125-1137. 10.1016/j.ins.2010.11.004.

5.

Zorlutuna, Í.;Akdag, M.;Min, W.K.;Atmaca, S.;. (2012). Remarks on soft topological spaces. Ann. Fuzzy Math. Inform., 3(2), 171-185.

6.

Kim, Y.C.;Ko, J.M.;. (0000). Soft L-uniformities and soft L-neighborhood systems. J. Math. Comput. Sci., .

7.

Hájek, P.;. Metamathematices of Fuzzy Logic.

8.

Höhle, U.;Rodabaugh, S.E.;. Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory. The Handbooks of Fuzzy Sets Series 3.

9.

Kim, Y.C.;Ko, J.M.;. (0000). Soft L-topologies and soft L-neighborhood systems. J. Math. Comput. Sci., .

10.

Kim, Y.C.;Ko, J.M.;. (0000). Soft L-fuzzy quasi-uniformities and soft L-fuzzy topogenous orders. Submit to J. Intelligent and Fuzzy Systems, .

11.

Lowen, R.;. (1981). Fuzzy uniform spaces. J. Math. Anal. Appl., 82, 370-385. 10.1016/0022-247X(81)90202-X.

12.

Molodtsov, D.;. (1999). Soft set theory. Comput. Math. Appl., 37, 19-31.

13.

Pawlak, Z.;. (1982). Rough sets. Int. J. Comput. Inf. Sci., 11, 341-356. 10.1007/BF01001956.

14.

Pawlak, Z.;. (1984). Rough probability. Bull. Pol. Acad. Sci. Math., 32, 607-615.

15.

Ramadan, A.A.;Elkordy, E.H.;Kim, Y.C.;. (2015). Perfect L-fuzzy topogenous space, L-fuzzy quasi-proximities and L-fuzzy quasi-uniform spaces. J. Intelligent and Fuzzy Systems, 28, 2591-2604. 10.3233/IFS-151538.

16.

Shabir, M.;Naz, M.;. (2011). On soft topological spaces. Comput. Math. Appl., 61, 1786-1799. 10.1016/j.camwa.2011.02.006.

17.

Tanay, B.;Kandemir, M.B.;. (2011). Topological structure of fuzzy soft sets. Comput. Math. Appl., 61(10), 2952-2957. 10.1016/j.camwa.2011.03.056.

18.

Zhao, Hu;Li, Sheng-Gang;. (2013). L-fuzzifying soft topological spaces and L-fuzzifying soft interior operators. Ann. Fuzzy Math. Inform., 5(3), 493-503. 10.1007/s12543-013-0160-2.

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics