바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

COMMON FIXED POINT THEOREMS OF MEIR-KEELER TYPE ON MULTIPLICATIVE METRIC SPACES

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2016, v.23 no.2, pp.131-143
https://doi.org/10.7468/jksmeb.2016.23.2.131
DESHPANDE, BHAVANA
SHEIKH, SAJAD AHMAD
  • Downloaded
  • Viewed

Abstract

In this paper, we present some common fixed point theorems for two pairs of weakly compatible self-mappings on multiplicative metric spaces satisfying a generalized Meir-Keeler type contractive condition. The results obtained in this paper extend, improve and generalize some well known comparable results in literature.

keywords
weak compatible mappings, multiplicative metric space, common property (E.A), (JCLR) property, common fixed points, Meir-Keeler type contractive condition

Reference

1.

Abbas, M.;Altun, I.;Gopal, D.;. (2009). Common fixed point theorems for non compatible mappings in fuzzy metric spaces. Bull. Math. Anal. Appl., 1(2), 47-56.

2.

Banach, S.;. (1922). Sur les operations dans les ensembles abstraits et leur applications aux equations integrales. Fundam. Math., 3, 133-181.

3.

Bashirov, A.E.;Kurplnara, E.M.;Ozyapici, A.;. (2008). Multiplicative calculus and its applicatiopns. J. Math. Anal. Appl., 337, 36-48. 10.1016/j.jmaa.2007.03.081.

4.

Chauhan, S.;Sintunavarat, W.;Kumam, P.;. (2012). Common Fixed point theorems for weakly compatible mappings in fuzzy metric spaces using (JCLR) property. Applied Mathematics, 3(9), 976-982. 10.4236/am.2012.39145.

5.

Gu, F.;Cho, Y.J.;. (0000). Common fixed point results for four maps satisfying ϕ-contractive condition in multiplicative metric spaces. Fixed Point Theory Appl., . 10.1186/s13663-015-0412-4.

6.

Jha, K.;Pant, R.;Singh, S.L.;. (2003). Common fixed point for compatible mappings in metric spaces. Radovi Mat., 12, 107-114.

7.

Jungck, G.;. (1996). Common fixed points for noncontinuous nonself maps on non-metric spaces. Far East J. Math. Sci., 4, 199-215.

8.

Jungck, G.;. (1976). Commuting mappings and fixed points. Am. Math. Mon., 73, 261-263.

9.

Jungck, G.;. (1986). Compatible mappings and common fixed points. Int. J. Math. Math. Sci., 9(4), 771-779. 10.1155/S0161171286000935.

10.

Lui, W.;Wu, J.;Li, Z.;. (2005). Common fixed points of single-valued and multi-valued maps. Int. J. Math. Sci., 19, 3045-3055.

11.

Aamri, M.;El Moutawakil, D.;. (2002). Some new common fixed point theorems under strict contractive conditions. J. Math. Anal. Appl., 270(1), 181-188. 10.1016/S0022-247X(02)00059-8.

12.

Pant, R.P.;Jha, K.;. (2002). A generalization of Meir-Keeler type common fixed point for four mappings. J. Natural and Physical Sciences, 16(1-2), 77-84.

13.

Pant, R.P.;Jha, K.;. (2003). A generalization of Meir-Keeler type fixed point theorems for four mappings. Ultra Science, 15(1), 97-102.

14.

Park, S.;Rhoades, B.E.;. (1981). Meir-Keeler contractive conditions. Math. Japonica, 26(1), 13-20.

15.

Popa, V.;. (2004). A general common fixed point theorem of Meir and Killer type for non continuous weak compatible mappings. Filomat (Nis), 18, 33-40.

16.

Rao, J.H.N.;Rao, K.P.R.;. (1985). Generalizations of fixed point theorem of Meir and Keeler type. Indian J. Pure Appl. Math., 16(1), 1249-1262.

17.

Sessa, S.;. (1982). On a weak commutativity condition of mappings in fixed point consideration. Publ. Inst. Math. Soc., 32, 149-153.

18.

Bouhadjera, H.;Djoudi, A.;. (2008). On fixed point theorems of Meir and Killer type. An. St. Univ. Ovidius Constanta., 16(2), 39-46.

19.

Ozavsar, M.;Cevikel, A.C.;. Fixed points of multiplicative contraction mappings on multiplicative metric spaces.

20.

Maiti, M.;Pal, T.K.;. (1978). Generalizations of two fixed point theorems. Bull. Calcutta Math. Soc., 70, 57-61.

21.

Meir, A.;Keeler, E.;. (1969). A theorem on contraction mappings. J. Math. Anal. Appl., 28, 326-329. 10.1016/0022-247X(69)90031-6.

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics