ISSN : 1226-0657
This paper shows that the solutions to the nonlinear perturbed differential system <TEX>$y{\prime}=f(t,y)+\int_{t_0}^{t}g(s,y(s),T_1y(s))ds+h(t,y(t),T_2y(t))$</TEX>, have the bounded property by imposing conditions on the perturbed part <TEX>$\int_{t_0}^{t}g(s,y(s),T_1y(s))ds,h(t,y(t),T_2y(t))$</TEX>, and on the fundamental matrix of the unperturbed system y′ = f(t, y) using the notion of h-stability.
Choi, S.I.;Goo, Y.H.;. (2014). Lipschitz and asymptotic stability for nonlinear perturbed differential systems. J. Chungcheong Math. Soc., 27.
Alekseev, V.M.;. (1961). An estimate for the perturbations of the solutions of ordinary differential equations. Vestn. Mosk. Univ. Ser. I. Math. Mekh., 2, 28-36.
Choi, S.I.;Goo, Y.H.;. (2015). Boundedness in perturbed nonlinear functional differential systems. J. Chungcheong Math. Soc., 28, 217-228. 10.14403/jcms.2015.28.2.217.
Brauer, F.;. (1966). Perturbations of nonlinear systems of differential equations. J. Math. Anal. Appl., 14, 198-206. 10.1016/0022-247X(66)90021-7.
Goo, Y.H.;. (2013). Boundedness in the perturbed differential systems. J. Korean Soc. Math. Edu. Ser.B: Pure Appl. Math., 20, 223-232.
Choi, S.K.;Ryu, H.S.;. (1993). h–stability in differential systems. Bull. Inst. Math. Acad. Sinica, 21, 245-262.
Choi, S.K.;Koo, N.J.;Ryu, H.S.;. (1997). h-stability of differential systems via t∞-similarity. Bull. Korean. Math. Soc., 34, 371-383.
Conti, R.;. (1957). Sulla t∞-similitudine tra matricie l’equivalenza asintotica dei sistemi differenziali lineari. Rivista di Mat. Univ. Parma, 8, 43-47.
Y.H., Goo;. (2013). Boundedness in the perturbed nonlinear differential systems. Far East J. Math. Sci(FJMS), 79, 205-217.
Lakshmikantham, V.;Leela, S.;. Differential and Integral Inequalities: Theory and Applications.
Y.H., Goo;. (0000). Boundedness in functional differential systems via t∞-similarity. J. Chungcheong Math. Soc., .
Y.H., Goo;. (2016). Uniform Lipschitz stability and asymptotic behavior for perturbed differential systems. Far East J. Math. Sciences, 99, 393-412. 10.17654/MS099030393.
Hewer, G.A.;. (1973). Stability properties of the equation by t∞-similarity. J. Math. Anal. Appl., 41, 336-344. 10.1016/0022-247X(73)90209-6.
Pachpatte, B.G.;. (1974). Stability and asymptotic behavior of perturbed nonlinear systems. J. diff. equations, 16, 14-25. 10.1016/0022-0396(74)90025-4.
Pinto, M.;. (1992). Stability of nonlinear differential systems. Applicable Analysis, 43, 1-20. 10.1080/00036819208840049.
Pachpatte, B.G.;. (1975). Perturbations of nonlinear systems of differential equations. J. Math. Anal. Appl., 51, 550-556. 10.1016/0022-247X(75)90106-7.
Pinto, M.;. (1984). Perturbations of asymptotically stable differential systems. Analysis, 4, 161-175.