바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

Boundedness in the nonlinear perturbed differential systems via t∞–similarity

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2016, v.23 no.2, pp.105-117
https://doi.org/10.7468/jksmeb.2016.23.2.105
GOO, YOON HOE

Abstract

This paper shows that the solutions to the nonlinear perturbed differential system <TEX>$y{\prime}=f(t,y)+\int_{t_0}^{t}g(s,y(s),T_1y(s))ds+h(t,y(t),T_2y(t))$</TEX>, have the bounded property by imposing conditions on the perturbed part <TEX>$\int_{t_0}^{t}g(s,y(s),T_1y(s))ds,h(t,y(t),T_2y(t))$</TEX>, and on the fundamental matrix of the unperturbed system y&#x2032; = f(t, y) using the notion of h-stability.

keywords
h-stability, t<sub>∞</sub>-similarity, bounded, nonlinear nonautonomous system

Reference

1.

Choi, S.I.;Goo, Y.H.;. (2014). Lipschitz and asymptotic stability for nonlinear perturbed differential systems. J. Chungcheong Math. Soc., 27.

2.

Alekseev, V.M.;. (1961). An estimate for the perturbations of the solutions of ordinary differential equations. Vestn. Mosk. Univ. Ser. I. Math. Mekh., 2, 28-36.

3.

Choi, S.I.;Goo, Y.H.;. (2015). Boundedness in perturbed nonlinear functional differential systems. J. Chungcheong Math. Soc., 28, 217-228. 10.14403/jcms.2015.28.2.217.

4.

Brauer, F.;. (1966). Perturbations of nonlinear systems of differential equations. J. Math. Anal. Appl., 14, 198-206. 10.1016/0022-247X(66)90021-7.

5.

Goo, Y.H.;. (2013). Boundedness in the perturbed differential systems. J. Korean Soc. Math. Edu. Ser.B: Pure Appl. Math., 20, 223-232.

6.

Choi, S.K.;Ryu, H.S.;. (1993). h&#x2013;stability in differential systems. Bull. Inst. Math. Acad. Sinica, 21, 245-262.

7.

Choi, S.K.;Koo, N.J.;Ryu, H.S.;. (1997). h-stability of differential systems via t&#x221E;-similarity. Bull. Korean. Math. Soc., 34, 371-383.

8.

Conti, R.;. (1957). Sulla t&#x221E;-similitudine tra matricie l&#x2019;equivalenza asintotica dei sistemi differenziali lineari. Rivista di Mat. Univ. Parma, 8, 43-47.

9.

Y.H., Goo;. (2013). Boundedness in the perturbed nonlinear differential systems. Far East J. Math. Sci(FJMS), 79, 205-217.

10.

Lakshmikantham, V.;Leela, S.;. Differential and Integral Inequalities: Theory and Applications.

11.

Y.H., Goo;. (0000). Boundedness in functional differential systems via t&#x221E;-similarity. J. Chungcheong Math. Soc., .

12.

Y.H., Goo;. (2016). Uniform Lipschitz stability and asymptotic behavior for perturbed differential systems. Far East J. Math. Sciences, 99, 393-412. 10.17654/MS099030393.

13.

Hewer, G.A.;. (1973). Stability properties of the equation by t&#x221E;-similarity. J. Math. Anal. Appl., 41, 336-344. 10.1016/0022-247X(73)90209-6.

14.

Pachpatte, B.G.;. (1974). Stability and asymptotic behavior of perturbed nonlinear systems. J. diff. equations, 16, 14-25. 10.1016/0022-0396(74)90025-4.

15.

Pinto, M.;. (1992). Stability of nonlinear differential systems. Applicable Analysis, 43, 1-20. 10.1080/00036819208840049.

16.

Pachpatte, B.G.;. (1975). Perturbations of nonlinear systems of differential equations. J. Math. Anal. Appl., 51, 550-556. 10.1016/0022-247X(75)90106-7.

17.

Pinto, M.;. (1984). Perturbations of asymptotically stable differential systems. Analysis, 4, 161-175.

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics