바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

Additive-quadratic -functional inequalities in fuzzy Banach spaces

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2016, v.23 no.2, pp.163-179
https://doi.org/10.7468/jksmeb.2016.23.2.163
LEE, SUNG JIN
SEO, JEONG PIL

Abstract

Let <TEX>$M_1f(x,y):=\frac{3}{4}f(x+y)-\frac{1}{4}f(-x-y)+\frac{1}{4}(x-y)+\frac{1}{4}f(y-x)-f(x)-f(y)$</TEX>, <TEX>$M_2f(x,y):=2f(\frac{x+y}{2})+f(\frac{x-y}{2})+f(\frac{y-x}{2})-f(x)-f(y)$</TEX> Using the direct method, we prove the Hyers-Ulam stability of the additive-quadratic &#x3C1;-functional inequalities (0.1) <TEX>$N(M_1f(x,y)-{\rho}M_2f(x,y),t){\geq}\frac{t}{t+{\varphi}(x,y)}$</TEX> and (0.2) <TEX>$N(M_2f(x,y)-{\rho}M_1f(x,y),t){\geq}\frac{t}{t+{\varphi}(x,y)}$</TEX> in fuzzy Banach spaces, where &#x3C1; is a fixed real number with &#x3C1; &#x2260; 1.

keywords
fuzzy Banach space, additive-quadratic ρ-functional inequality, Hyers-Ulam stability

Reference

1.

Cholewa, P.W.;. (1984). Remarks on the stability of functional equations. Aequationes Math, 27, 76-86. 10.1007/BF02192660.

2.

Eskandani, G.Z.;G&#x103;vruta, P.;. (2012). Hyers-Ulam-Rassias stability of pexiderized Cauchy functional equation in 2-Banach spaces. J. Nonlinear Sci. Appl., 5, 459-465.

3.

Felbin, C.;. (1992). Finite dimensional fuzzy normed linear spaces. Fuzzy Sets and Systems, 48, 239-248. 10.1016/0165-0114(92)90338-5.

4.

G&#x103;vruta, P.;. (1994). A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl., 184, 431-436. 10.1006/jmaa.1994.1211.

5.

Lu, G.;Wang, Y.;Ye, P.;. (2016). n-Jordan *-derivations on induced fuzzy C*-algebras. J. Comput. Anal. Appl., 20, 266-276.

6.

Katsaras, A.K.;. (1984). Fuzzy topological vector spaces II. Fuzzy Sets and Systems, 12, 143-154. 10.1016/0165-0114(84)90034-4.

7.

Hyers, D.H.;. (1941). On the stability of the linear functional equation. Proc. Nat. Acad. Sci. U.S.A, 27, 222-224. 10.1073/pnas.27.4.222.

8.

Kramosil, I.;Michalek, J.;. (1975). Fuzzy metric and statistical metric spaces. Kybernetica, 11, 326-334.

9.

Krishna, S.V.;Sarma, K.K.M.;. (1994). Separation of fuzzy normed linear spaces. Fuzzy Sets and Systems, 63, 207-217. 10.1016/0165-0114(94)90351-4.

10.

Mihet, D.;Saadati, R.;. (2011). On the stability of the additive Cauchy functional equation in random normed spaces. Appl. Math. Lett., 24, 2005-2009. 10.1016/j.aml.2011.05.033.

11.

Mirmostafaee, A.K.;Mirzavaziri, M.;Moslehian, M.S.;. (2008). Fuzzy stability of the Jensen functional equation. Fuzzy Sets and Systems, 159, 730-738. 10.1016/j.fss.2007.07.011.

12.

Ravi, K.;Thandapani, E.;Senthil Kumar, B.V.;. (2014). Solution and stability of a reciprocal type functional equation in several variables. J. Nonlinear Sci. Appl., 7, 18-27.

13.

Mirmostafaee, A.K.;Moslehian, M.S.;. (2008). Fuzzy versions of Hyers-Ulam-Rassias theorem. Fuzzy Sets and Systems, 159, 720-729. 10.1016/j.fss.2007.09.016.

14.

Mirmostafaee, A.K.;Moslehian, M.S.;. (2008). Fuzzy approximately cubic mappings. Inform. Sci., 178, 3791-3798. 10.1016/j.ins.2008.05.032.

15.

Movahednia, E.;Mosadegh, S.M.;Park, C.;Shin, D.;. (2016). Stability of a lattice preserving functional equation on Riesz space: fixed point alternative. J. Comput. Anal. Appl., 21, 83-89.

16.

Park, C.;. (2015). Additive &#x3C1;-functional inequalities and equations. J. Math. Inequal., 9, 17-26.

17.

Park, C.;. (2015). Additive &#x3C1;-functional inequalities in non-Archimedean normed spaces. J. Math. Inequal., 9, 397-407.

18.

Park, C.;Ghasemi, K.;Ghaleh, S.G.;Jang, S.;. (2013). Approximate n-Jordan *-homomorphisms in C*-algebras. J. Comput. Anal. Appl., 15, 365-368.

19.

Park, C.;Najati, A.;Jang, S.;. (2013). Fixed points and fuzzy stability of an additive-quadratic functional equation. J. Comput. Anal. Appl., 15, 452-462.

20.

Rassias, M.;. (1978). On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc., 72, 297-300. 10.1090/S0002-9939-1978-0507327-1.

21.

Park, C.;. (2016). Stability of ternary quadratic derivation on ternary Banach algebras: revisited. J. Comput. Anal. Appl., 20, 21-23.

22.

Shin, D.;Park, C.;Farhadabadi, Sh.;. (2014). On the superstability of ternary Jordan C*-homomorphisms. J. Comput. Anal. Appl., 16, 964-973.

23.

Schin, S.;Ki, D.;Chang, J.;Kim, M.;. (2011). Random stability of quadratic functional equations: a fixed point approach. J. Nonlinear Sci. Appl., 4, 37-49.

24.

Shagholi, S.;Bavand Savadkouhi, M.;Eshaghi Gordji, M.;. (2011). Nearly ternary cubic homomorphism in ternary Fr&#xE9;chet algebras. J. Comput. Anal. Appl., 13, 1106-1114.

25.

Shagholi, S.;Eshaghi Gordji, M.;Bavand Savadkouhi, M.;. (2011). Stability of ternary quadratic derivation on ternary Banach algebras. J. Comput. Anal. Appl., 13, 1097-1105.

26.

Xiao, J.Z.;Zhu, X.H.;. (2003). Fuzzy normed spaces of operators and its completeness. Fuzzy Sets and Systems, 133, 389-399. 10.1016/S0165-0114(02)00274-9.

27.

Shin, D.;Park, C.;Farhadabadi, Sh.;. (2014). Stability and superstability of J*-homomorphisms and J*-derivations for a generalized Cauchy-Jensen equation. J. Comput. Anal. Appl., 17, 125-134.

28.

Skof, F.;. (1983). Propriet locali e approssimazione di operatori. Rend. Sem. Mat. Fis. Milano, 53, 113-129. 10.1007/BF02924890.

29.

Ulam, S.M.;. A Collection of the Mathematical Problems.

30.

Zaharia, C.;. (2013). On the probabilistic stability of the monomial functional equation. J. Nonlinear Sci. Appl., 6, 51-59.

31.

Zolfaghari, S.;. (2010). Approximation of mixed type functional equations in p-Banach spaces. J. Nonlinear Sci. Appl., 3, 110-122.

32.

Bag, T.;Samanta, S.K.;. (2003). Finite dimensional fuzzy normed linear spaces. J. Fuzzy Math., 11, 687-705.

33.

Adam, M.;. (2011). On the stability of some quadratic functional equation. J. Nonlinear Sci. Appl., 4, 50-59.

34.

C&#x103;dariu, L.;G&#x103;vruta, L.;G&#x103;vruta, P.;. (2013). On the stability of an affine functional equation. J. Nonlinear Sci. Appl., 6, 60-67.

35.

Aoki, T.;. (1950). On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan, 2, 64-66. 10.2969/jmsj/00210064.

36.

Bag, T.;Samanta, S.K.;. (2005). Fuzzy bounded linear operators. Fuzzy Sets and Systems, 151, 513-547. 10.1016/j.fss.2004.05.004.

37.

Chahbi, A.;Bounader, N.;. (2013). On the generalized stability of d&#x2019;Alembert functional equation. J. Nonlinear Sci. Appl., 6, 198-204.

38.

Chang, I.;Lee, Y.;. (2013). Additive and quadratic type functional equation and its fuzzy stability. Results Math, 63, 717-730. 10.1007/s00025-012-0229-y.

39.

Cheng, S.C.;Mordeson, J.M.;. (1994). Fuzzy linear operators and fuzzy normed linear spaces. Bull. Calcutta Math. Soc., 86, 429-436.

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics