ISSN : 1226-0657
In this paper we obtain some retarded integral inequalities involving Stieltjes derivatives and we use our results in the study of various qualitative properties of a certain retarded impulsive differential equation.
Frănková, D.;. (1991). Regulated functions. Math. Bohem., 116, 20-59.
Hönig, C.S.;. Volterra Stieltjes-integral equations. Mathematics Studies 16.
Kim, Y.J.;. (2011). Stieltjes derivatives and its applications to integral inequalities of Stieltjes type. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math., 18(1), 63-78.
Kim, Y.J.;. (2014). Stieltjes derivative method for integral inequalities with impulses. J. Korean Soc. Math. Educ.Ser. B: Pure Appl. Math., 21(1), 61-75.
Pachpatte, B. G.;. (1998). Inequalities for differential and integral equations. Mathematics in Science and Engineering, 197.
Pachpatte, B. G.;. Integral and finite difference inequalities and applications. Mathematics Studies 205.
Rudin, W.;. Functional analysis.
Samoilenko, A.M.;Perestyuk, N.A.;. Impulsive differential equations.
Schaefer, H.;. (1955). Über die methode der a priori-Schranken. Math. Ann., 29, 415-416.
Schwabik, Š.;. Generalized ordinary differential equations.
Schwabik, Š.;Tvrdý, M.;Vejvoda, O.;. Differntial and integral equations: boundary value problems and adjoints.
Tvrdý, M.;. (1989). Regulated functions and the Perron-Stieltjes integral. Časopis pešt. mat., 114(2), 187-209.