바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

ADDITIVE-QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN FUZZY NORMED SPACES

ADDITIVE-QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN FUZZY NORMED SPACES

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2016, v.23 no.3, pp.247-263
https://doi.org/10.7468/jksmeb.2016.23.3.247
YUN, SUNGSIK (DEPARTMENT OF FINANCIAL MATHEMATICS, HANSHIN UNIVERSITY)
LEE, JUNG RYE (DEPARTMENT OF MATHEMATICS, DAEJIN UNIVERSITY)
SHIN, DONG YUN (DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SEOUL)

Abstract

Let <TEX>$M_{1}f(x,y):=\frac{3}{4}f(x+y)-\frac{1}{4}f(-x-y)+\frac{1}{4}f(x-y)+\frac{1}{4}f(y-x)-f(x)-f(y)$</TEX>, <TEX>$M_{2}f(x,y):=2f(\frac{x+y}{2})+f(\frac{x-y}{2})+f(\frac{y-x}{2})-f(x)-f(y)$</TEX>. Using the direct method, we prove the Hyers-Ulam stability of the additive-quadratic &#x3C1;-functional inequalities (0.1) <TEX>$N(M_{1}f(x,y),t){\geq}N({\rho}M_{2}f(x,y),t)$</TEX> where &#x3C1; is a fixed real number with |&#x3C1;| &#x3C; 1, and (0.2) <TEX>$N(M_{2}f(x,y),t){\geq}N({\rho}M_{1}f(x,y),t)$</TEX> where &#x3C1; is a fixed real number with |&#x3C1;| &#x3C; <TEX>$\frac{1}{2}$</TEX>.

keywords
fuzzy Banach space, additive-quadratic ρ-functional inequality, Hyers-Ulam stability

한국수학교육학회지시리즈B:순수및응용수학