바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

ADDITIVE ρ-FUNCTIONAL INEQUALITIES IN β-HOMOGENEOUS F-SPACES

Additive ρ-functional inequalities in β-homogeneous F-spaces

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2016, v.23 no.3, pp.319-328
https://doi.org/10.7468/jksmeb.2016.23.3.319
LEE, HARIN (MATHEMATICS BRANCH, SEOUL SCIENCE HIGH SCHOOL)
CHA, JAE YOUNG (MATHEMATICS BRANCH, SEOUL SCIENCE HIGH SCHOOL)
CHO, MIN WOO (MATHEMATICS BRANCH, SEOUL SCIENCE HIGH SCHOOL)
KWON, MYUNGJUN (MATHEMATICS BRANCH, SEOUL SCIENCE HIGH SCHOOL)

Abstract

In this paper, we solve the additive &#x3C1;-functional inequalities (0.1) ||f(2x-y)+f(y-x)-f(x)|| <TEX>$\leq$</TEX> ||<TEX>${\rho}(f(x+y)-f(x)-f(y))$</TEX>||, where &#x3C1; is a fixed complex number with |&#x3C1;| &#x3C; 1, and (0.2) ||f(x+y)-f(x)-f(y)|| <TEX>$\leq$</TEX> ||<TEX>${\rho}(f(2x-y)-f(y-x)-f(x))$</TEX>||, where &#x3C1; is a fixed complex number with |&#x3C1;| &#x3C; <TEX>$\frac{1}{2}$</TEX>. Using the direct method, we prove the Hyers-Ulam stability of the additive &#x3C1;-functional inequalities (0.1) and (0.2) in &#x3B2;-homogeneous F-spaces.

keywords
Hyers-Ulam stability, β-homogeneous F-space, additive ρ-functional inequality

한국수학교육학회지시리즈B:순수및응용수학