바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN3059-0604
  • E-ISSN3059-1309
  • KCI

QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN NON-ARCHIMEDEAN NORMED SPACES

QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN NON-ARCHIMEDEAN NORMED SPACES

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: Theoretical Mathematics and Pedagogical Mathematics, (P)3059-0604; (E)3059-1309
2017, v.24 no.2, pp.109-127
https://doi.org/10.7468/jksmeb.2017.24.2.109
Cui, Yinhua (Department of Mathematics, Yanbian University)
Hyun, Yuntak (Department of Mathematics, Hanyang University)
Yun, Sungsik (Department of Financial Mathematics, Hanshin University)

Abstract

In this paper, we solve the following quadratic <TEX>${\rho}-functional$</TEX> inequalities <TEX>${\parallel}f({\frac{x+y+z}{2}})+f({\frac{x-y-z}{2}})+f({\frac{y-x-z}{2}})+f({\frac{z-x-y}{2}})-f(x)-f(y)f(z){\parallel}$</TEX> (0.1) <TEX>${\leq}{\parallel}{\rho}(f(x+y+z)+f(x-y-z)+f(y-x-z)+f(z-x-y)-4f(x)-4f(y)-4f(z)){\parallel}$</TEX>, where <TEX>${\rho}$</TEX> is a fixed non-Archimedean number with <TEX>${\mid}{\rho}{\mid}$</TEX> < <TEX>${\frac{1}{{\mid}4{\mid}}}$</TEX>, and <TEX>${\parallel}f(x+y+z)+f(x-y-z)+f(y-x-z)+f(z-x-y)-4f(x)-4f(y)-4f(z){\parallel}$</TEX> (0.2) <TEX>${\leq}{\parallel}{\rho}(f({\frac{x+y+z}{2}})+f({\frac{x-y-z}{2}})+f({\frac{y-x-z}{2}})+f({\frac{z-x-y}{2}})-f(x)-f(y)f(z)){\parallel}$</TEX>, where <TEX>${\rho}$</TEX> is a fixed non-Archimedean number with <TEX>${\mid}{\rho}{\mid}$</TEX> < <TEX>${\mid}8{\mid}$</TEX>. Using the direct method, we prove the Hyers-Ulam stability of the quadratic <TEX>${\rho}-functional$</TEX> inequalities (0.1) and (0.2) in non-Archimedean Banach spaces and prove the Hyers-Ulam stability of quadratic <TEX>${\rho}-functional$</TEX> equations associated with the quadratic <TEX>${\rho}-functional$</TEX> inequalities (0.1) and (0.2) in non-Archimedean Banach spaces.

keywords
Hyers-Ulam stability, non-Archimedean normed space, quadratic <tex> ${\rho}-functional$</tex> equation, quadratic <tex> ${\rho}-functional$</tex> inequality

한국수학교육학회지시리즈B:순수및응용수학