바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

ON EVALUATIONS OF THE CUBIC CONTINUED FRACTION BY MODULAR EQUATIONS OF DEGREE 3

ON EVALUATIONS OF THE CUBIC CONTINUED FRACTION BY MODULAR EQUATIONS OF DEGREE 3

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2018, v.25 no.1, pp.17-29
https://doi.org/10.7468/jksmeb.2018.25.1.17
Paek, Dae Hyun (Department of Mathematics Education, Busan National University of Education)
Shin, Yong Jin (Department of Mechanical and Aerospace Engineering, Seoul National University)
Yi, Jinhee (Department of Mathematics and Computer Science, Korea Science Academy of KAIST)

Abstract

We find modular equations of degree 3 to evaluate some new values of the cubic continued fraction <TEX>$G(e^{-{\pi}\sqrt{n}})$</TEX> and <TEX>$G(-e^{-{\pi}\sqrt{n}})$</TEX> for <TEX>$n={\frac{2{\cdot}4^m}{3}}$</TEX>, <TEX>${\frac{1}{3{\cdot}4^m}}$</TEX>, and <TEX>${\frac{2}{3{\cdot}4^m}}$</TEX>, where m = 1, 2, 3, or 4.

keywords
continued fraction, modular equation, theta function

한국수학교육학회지시리즈B:순수및응용수학