바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

SOME SPECIAL CURVES IN THREE DIMENSIONAL f-KENMOTSU MANIFOLDS

Some special curves in three dimensional f-Kenmotsu manifolds

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2020, v.27 no.2, pp.83-96
https://doi.org/https://doi.org/10.7468/jksmeb.2020.27.2.83
Majhi, Pradip (Department of Pure Mathematics, University of Calcutta)
Biswas, Abhijit (Gouripur Hemazuddin High School(H.S))

Abstract

In this paper we study Biharmonic curves, Legendre curves and Magnetic curves in three dimensional f-Kenmotsu manifolds. We also study 1-type curves in a three dimensional f-Kenmotsu manifold by using the mean curvature vector field of the curve. As a consequence we obtain for a biharmonic helix in a three dimensional f-Kenmotsu manifold with the curvature &#x03BA; and the torsion &#x03C4;, &#x03BA;<sup>2</sup> + &#x03C4;<sup>2</sup> = -(f<sup>2</sup> + f'). Also we prove that if a 1-type non-geodesic biharmonic curve &#x03B3; is helix, then &#x03BB; = -(f<sup>2</sup> + f').

keywords
biharmonic curve, Legendre curve, 1-type curve, magnetic curve, f-Kenmotsu manifold

한국수학교육학회지시리즈B:순수및응용수학