ISSN : 1226-0657
A convergence structure defined by Kent [4] is a correspondence between the filters on a given set X and the subsets of X which specifies which filters converge to points of X. This concept is defined to include types of convergence which are more general than that defined by specifying a topology on X. Thus, a convergence structure may be regarded as a generalization of a topology. With a given convergence structure q on a set X, Kent [4] introduced associated convergence structures which are called a topological modification and a pretopological modification. (omitted)