ISSN : 1226-0657
Classical mechanics begins with some variants of Newton's laws. Lagrangian mechanics describes motion of a mechanical system in the configuration space which is a differential manifold defined by holonomic constraints. For a conservative system, the equations of motion are derived from the Lagrangian function on Hamilton's variational principle as a system of the second order differential equations. Thus, for conservative systems, Newtonian mechanics is a particular case of Lagrangian mechanics.(omitted)