ISSN : 3059-0604
Let R be a commutative ring with identity, X be an indeterminate over R, and R[X] be the polynomial ring over R. In this paper, we study when R[X] is a radically principal ideal ring. We also study the t-operation analog of a radically principal ideal domain, which is said to be t-compactly packed. Among them, we show that if R is an integrally closed domain, then R[X] is t-compactly packed if and only if R is t-compactly packed and every prime ideal Q of R[X] with Q ∩ R = (0) is radically principal.