ISSN : 1226-0657
An atomic integral domain R is a half-factorial domain (HFD) if whenever <TEX>$\chi_1$</TEX>… <TEX>$\chi_{m}=y_1$</TEX>…<TEX>$y_n$</TEX> with each <TEX>$\chi_{i},y_j \in R$<TEX> irreducible, then m = n. In this paper, we show that if R[X] is an HFD, then <TEX>$Cl_{t}(R)$</TEX> <TEX>$\cong$</TEX> <TEX>$Cl_{t}$</TEX>(R[X]), and if <TEX>$G_1$</TEX> and <TEX>$G_2$</TEX> are torsion abelian groups, then there exists a Dedekind HFD R such that Cl(R) = <TEX>$G_1\bigoplus\; G_2$</TEX>.