바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

A REMARK ON HALF-FACTORIAL DOMAINS

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
1997, v.4 no.1, pp.93-96
Oh, Heung-Joon (Chodang University)

Abstract

An atomic integral domain R is a half-factorial domain (HFD) if whenever <TEX>$\chi_1$</TEX>… <TEX>$\chi_{m}=y_1$</TEX>…<TEX>$y_n$</TEX> with each <TEX>$\chi_{i},y_j \in R$<TEX> irreducible, then m = n. In this paper, we show that if R[X] is an HFD, then <TEX>$Cl_{t}(R)$</TEX> <TEX>$\cong$</TEX> <TEX>$Cl_{t}$</TEX>(R[X]), and if <TEX>$G_1$</TEX> and <TEX>$G_2$</TEX> are torsion abelian groups, then there exists a Dedekind HFD R such that Cl(R) = <TEX>$G_1\bigoplus\; G_2$</TEX>.

keywords
half-factorial domain

한국수학교육학회지시리즈B:순수및응용수학