바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

ON THE OPTIMAL COVERING OF EQUAL METRIC BALLS IN A SPHERE

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
1997, v.4 no.2, pp.137-144
Cho, Min-Shik (Department of Mathematics Education, Korea National University of Education)

Abstract

In this paper we consider covering problems in spherical geometry. Let <TEX>$cov_q{S_1}^n$</TEX> be the smallest radius of q equal metric balls that cover n-dimensional unit sphere <TEX>${S_1}^n$</TEX>. We show that <TEX>$cov_q{S_1}^n\;=\;\frac{\pi}{2}\;for\;2\leq\;q\leq\;n+1$</TEX> and <TEX>$\pi-arccos(\frac{-1}{n+1})$</TEX> for q = n + 2. The configuration of centers of balls realizing <TEX>$cov_q{S_1}^n$</TEX> are established, simultaneously. Moreover, some properties of <TEX>$cov_{q}$</TEX>X for the compact metric space X, in general, are proved.

keywords
Spherical Geometry, Covering Radii, Covering Problems

한국수학교육학회지시리즈B:순수및응용수학