바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

ON p-HYPONORMAL OPERATORS ON A HILBERT SPACE

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
1998, v.5 no.2, pp.109-114
Cha, Hyung-Koo (Department of Mathematics, Hanyang University)

Abstract

Let H be a separable complex H be a space and let (equation omitted)(H) be the *-algebra of all bounded linear operators on H. An operator T in (equation omitted)(H) is said to be p-hyponormal if (<TEX>$T^{\ast}T)^p - (TT^{\ast})^{p}\geq$</TEX> 0 for 0 < p < 1. If p = 1, T is hyponormal and if p = <TEX>$\frac{1}{2}$</TEX>, T is semi-hyponormal. In this paper, by using a technique introduced by S. K. Berberian, we show that the approximate point spectrum <TEX>$\sigma_{\alpha p}(T) of a pure p-hyponormal operator T is empty, and obtains the compact perturbation of T.

keywords
polar decomposition, p-hyponormal, spectrum, approximate point spectrum, joint point spectrum, joint approximate point spectrum, trace norm, strongly normal

한국수학교육학회지시리즈B:순수및응용수학