- P-ISSN 1225-0163
- E-ISSN 2288-8985
본 연구에서는 미지 대사물질 동정을 위해 GC-TOF/MS의 양이온 화학적 이온화 방법(positive chemical ionization, CI+)을 이용, 정확한 질량 값(accurate mass)과 동위원소 비(isotope ratio) 측정을 위한최적 조건을 확립하였다. 분자이온 [M+H]^+ 세기를 증가시킬 수 있는 high mass tune 방법이 사용되었으며, 화합물들의 분리 및 감도에 따른 검출조건이 고려되어 졌다. 24종의 trimethylsilyl (TMS)기로 유도체화 된 표준 대사물질들을 분석한 결과 [M+H]^+의 경우 이론 값 과의 절대평균오차는 6.8 ppm이였으며,동위원소 비(M+1/M, M+2/M)의 경우는 각각 1.5%와 1.7%였다. 얻어진 질량 값과 동위원소 비를 원소조성 알고리즘에 적용한 결과 21개의 화합물의 구조식이 2순위 내에서 일치하였다.
An accurate mass and isotope ratio were determined using a gas chromatography/time of flight mass spectrometer in CI positive mode for the identification of unknown metabolites. High mass tune was used to improve the ion intensity of [M+H]^+. Chromatographic resolution and dynamic range enhancement were performed to obtain more reliable accurate masses and correct isotope abundance ratios. Average absolute errors of mass and isotope ratios for 24 reference metabolite -TMS (trimethylsilyl) derivatives were 6.8 ppm, 1.5%of (M+1/M ratio) and 1.7% of (M+2/M ratio), respectively. The correct formulas of twenty one compound were retrieved within top-2 hit from the heuristic algorithm for elemental composition using each accurate mass and isotope abundance ratio.
1. G. V. Silas, S. Mas, M. Kesson, J. Smedsgaard and J. Nielsen, Mass Spectrometry Reviews, 24, 613-646(2005).
2. http://www.nist.gov/srd/nist1a.cfm
3. O. Fiehn, J. Kopka, P. Drmann, T. Altmann, R. N. Trethewey and L. Willmitzer, Nat. Biotechnol. 18, 1157-1161(2000).
4. S. Strelkov, M. V. Elstermann and D. Schomburg, Bio. Chem., 385, 853-861(2004).
5. C. Denkert, J. Budczies, T. Kind, W. Weichert, P. Tablack, J. Sehouli, S. Niesporek, D. Koensgen, M. Dietel and O. Fiehn, Cancer Res., 66(22), 10795-10804(2006).
6. J. Lisec, N. Schauer, J. Kopka, L. Willmitzer and A. R. Fernie, Nature Protocols 1, 387-396(2006).
7. D. Y. Lee and O. Fiehn, Plant Methods, 4, 1-13(2008).
8. D. Herebian and B. Hanisch, F.-J. Marner, Metabolomics, 1(4), 317-324(2005).
9. V. V. Tolstikov, Methods Mol. Biol., 544, 343-353(2009).
10. A. Gordin, A. B. Fialkov and A. Amirav, Rapid Commun Mass Spectrom., 22(17), 2660-2666(2008).
11. R. Flamini, A. D. Vedova, D. Cancian, A. Panighel and M. D. Rosso, J. Mass Spectrom., 42(5), 641-646(2007).
12. Q. Kuangnan, D. J. Gary and E. E. Kathleen, Int. J. Mass Spectrom., 265, 230-236(2007).
13. R. C. Jose and P. R. Paul, Organic Geochemistry, 30, 279-286(1999).
14. W. Welthagen, S. Mitschke, F. Mühlberger and R. Zimmermann, J. Chromatogr. A., 1150, 54-61(2007).
15. Z. Ralf, W. Werner and G. Thomas, J. Chromatogr. A., 1184, 296-308(2008).
16. T. Kind and O. Fiehn, BMC Bioinformatics, 7, 234, 1- 10(2006).
17. T. Kind and O. Fiehn, BMC Bioinformatics, 8, 115, 1- 20(2007).
18. Y. Wang and M. Gu, Anal Chem., 82(17), 7055-62(2010).
19. J. C. Erve, M. Gu, Y. Wang, W. DeMaio and R. E. Talaat, J. Am. Soc. Mass. Spectrom., 20(11) 2058-69(2009).
20. M. Gu, Y. Wang, X. G. Zhao and Z. M. Gu, Rapid Commun Mass Spectrom., 20(5), 764-70(2006).
21. http://fiehnlab.ucdavis.edu/projects/Seven_Golden_Rules/
22. T. Kind, G. Wohlgemuth, D. Y. Lee, Y. Lu, M. Palazoglu, S. Shahbaz and O. Fiehn, Anal. Chem., 81(24), 10038-10048(2009).
23. O. Masaki, Y. Hiroyuki, F. Hirohiko, K. Satoshi, Y. Daisuke, O. K. Koji, M. Eizi, S. Kazuhiko and U. Nobuo, Nucl. Instr. and Meth. in Phys. Res. B 236(1) 377-382(2005).
24. T. Kind, V. V. Tolstikov, O. Fiehn and R. H. Weiss, Anal. Biochem., 363, 185-195(2007).
25. S. Abate, Y. G. Ahn,T. Kind, T. Cataldi and O. Fiehn, Rapid Commun Mass Spectrom., 24, 1172-1180(2010).