Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Studies of separation and quantitation for selenium species in food

Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
2013, v.26 no.3, pp.182-189
https://doi.org/10.5806/AST.2013.26.3.182




  • Downloaded
  • Viewed

Abstract

The purpose of this research is to separate and quantitate selenium species in some food samples with HPLC-ICP-MS. Cation exchange chromatography showed efficient separation only for inorganic Se species while reversed phase ion pair chromatography showed good separation for both inorganic and organic Se species. C8 column (SymmetryshieldTM RP8, 3.5 μm, 4.6 × 150 mm) was used with optimum condition of 5% methanol mobile phase, 0.05% of nonafluorovaleric acid ion pairing reagent. Five standard Se species of Se(IV), Se(VI),SeCys(selenocystein), SeMet(selenomethionine) and Se-M-C(seleno methyl cystein) were separated successfully under the optimum condition (mobile phase; 5% methanol, ion-pairing reagent; 0.05% nonafluorovaleric acid,flow rate; 0.9 mL min−1). To extract Se species, microwave assisted and enzyme-assisted extraction methods were studied. In enzyme-assisted extraction method, protease I for garlic, protease I plus trypsin for pork and mackerel, and protease XIV for tuna showed the best extraction efficiency. With the optimum condition for each sample, it was found that mostly inorganic Se, SeCys and SeMet are present in the sample studied ranging from few μg g−1 to few tens of μg g−1.

keywords
Ion exchange chromatography, RP HPLC, ICP-MS, HPLC-ICP-MS, Se species, seleno amino acids


Reference

1

 O. Wada, N. Kurihara and N. Yamazaki, Jpn. J. Nutr. Assess., 10, 199-210 (1993).

2

 J. L. Shisler, T. G. Senkevich, M. J. Berry and B. Moss, Science, 279, 102-105 (1998).

3

 J. Virtamo, E. Valkeila, G. Algrhan, S. Punsar, K. K. Huttnen and M. J. Karvonen, Cancer, 60, 145-148 (1987).

4

 K. Kose, P. Dogan and Y. Kardas, Biol. Trace Elem. Res., 53, 51-56 (1996).

5

 O. A. Levander. Annu. Rev. Nutriti., 7, 227-250 (1987).

6

 J. Far, H. Preud'homme and R. Lobinski, Anal. Chim. Acta, 657, 175-190 (2010).

7

 M. Klein, L. Ouerdane, M. Bueno and F. Pannier, Metallomics, 3, 513-520 (2011).

8

 J. M. Navarrete, L. C. Longoria, M. T. Martinez and L. Cabrera, J. Radioanal. Nucl. Chem., 271, 599-601 (2007).

9

 P. C. Uden, Anal. Bioanal. Chem., 373, 422-431 (2002).

10

 X. Dauchy, M. Potin-Gautier, A. Astruc and M. Astruc, Fresen. J. Anal. Chem., 348, 792 (1994).

11

 H. Cho and Y. Pak, J. Kor. Chem. Soc., 55(3), 472-477 (2011).

12

 T. D. Grant, M. Montes-Bayon, D. Leduc, M. W. Fricke, N. Terry and J. A. Caruso, J. Chromatogr. A, 1026, 159-166 (2004).

13

 S. Kokarnig, D. Kuehnelt, M. Stiboller, U. Hartleb and K. A. Francesconi, Anal. Bioanal. Chem., 400, 2323- 2327 (2011).

14

 Q. Chan, S. E. Afton and J. A. Caruso, J. Anal. Atom. Spectrom., 25, 186-192 (2010).

15

 Q. Chan, S. E. Afton and J. A. Caruso, Metallomics, 2, 147-153 (2010).

16

 C. B. Hymer and J. A. Caruso, J. Chromatogr. A, 1045, 1-13 (2004).

17

 A. Prange and D. Pofrock, Anal. Bioanal. Chem., 383, 372-389 (2005).

18

 T. DeSnaele, P. Verrept, L. Moens and R. Dams, Spectrochim. Acta. B, 50, 1409-1421 (1995).

19

 L. H. Reyes, F. M. Sanz, P. H. Espilez, J. M. Marchante- Gayon, J. I. G. Alonso and A. Sanz-Medel, J. Anal. Atom. Spectrom., 19, 1230-1238 (2004).

20

 Z. Pedrero, D. Elvira, C. Camara and Y. Madrid, Anal. Chim. Acta., 596, 251-256 (2007).

21

 M. Kotrebai, M. Birringer, J. F. Tyson, E. Block and P. C. Uden, Analyst, 125, 71-78 (2000).

22

 M. Shah, S. S. Kannamkunarath, J. C. A. Wuilloud, R. G. Wuilloud and J. A. Caruso, J. Anal. Atom. Spectrom., 19, 381-387 (2004).

23

 C. Ip, M. Birringer, E. Block and M. Kotrebai, J. F. Tyson, P. C. Uden and D. J. Lisk, Agric. Food Chem., 48, 2062-2070 (2000).

24

 C. Casiot, J. Szpunar, R. Lobinski and M. Potin-Gautier, J. Anal. Atom. Spectrom., 14, 645-652 (1999).

25

 J. K. Kirby, G. H. Lyons and M. P. Karkkainen, J. Agric. Food Chem., 56(5), 1772-1779 (2008).

26

 S. G. Casal, J. Far, K. Bierla, L. Ouerdane and J. Szpunar, Metallomics, 2(8), 535-548 (2010).

27

 G. A. Zachariadis, D. C. Kapsimali and E. Rosenberg, Curr. Org. Chem., 14(19), 2282-2299 (2010).

28

 S. Cho, M. Kim, Y. Kim, Y. Min and Y. Kim, Anal. Science & Tech., 19(3), 203-210 (2006).

29

 O. Lee, Y. Jung and J. Moon, Korean J. Nutr., 43, 114- 122 (2010).

30

 Y. Ham, B. Kim, Y. Kwon, H. Paik and S. Lee, Anal. Science & Tech., 24(3), 159-167 (2011).

31

 S. Yoshida, M. Haratake, T. Fuchigami and M. Nakayama, J. Health Sci., 57, 215-224 (2011).

32

 J. L. Guzma Mar, L. H. Reyes, G. M. M. Rahman and H. M. S. Kingston, J. Agric. Food Chem., 57, 3005- 3013 (2009).

상단으로 이동

Analytical Science and Technology