Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Article Contents

    A new nano-composite carbon ink for disposable dopamine biosensors

    Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
    2016, v.29 no.1, pp.35-42
    https://doi.org/10.5806/AST.2016.29.1.35
    THIRUMALAIDINAKARAN

    • Downloaded
    • Viewed

    Abstract

    A new nano-composite carbon ink for the development of disposable dopamine (DA) biosensors based on screen-printed carbon electrodes (SPCEs) is introduced. The method developed uses SPCEs coupled with a tyrosinase modified nano-composite carbon ink. The ink was prepared by an “in-house” procedure with reduced graphene oxide (rGO), Pt nanoparticles (PtNP), and carbon materials such as carbon black and graphite. The rGO-PtNP carbon composite ink was used to print the working electrodes of the SPCEs and the reference counter electrodes were printed by using a commercial Ag/AgCl ink. After the construction of nano-composite SPCEs, tyrosinase was immobilized onto the working electrodes by using a biocompatible matrix, chitosan. The composite of nano-materials was characterized by X-ray photoelectron spectroscopy (XPS) and the performance characteristics of the sensors were evaluated by using voltammetric and amperometric techniques. The cyclic voltammetry results indicated that the sensors prepared with the rGO-PtNP-carbon composite ink revealed a significant improvement in electro-catalytic activity to DA compared with the results obtained from bare or only PtNP embedded carbon inks. Optimum experimental parameters such as pH and operating potential were evaluated and calibration curves for dopamine were constructed with the results obtained from a series of amperometric detections at -0.1 V vs. Ag/AgCl. The limit of detection was found to be 14 nM in a linear range of 10 nM to 100 μM of DA, and the sensor’s sensitivity was calculated to be 0.4 μAμM−1cm−2.

    keywords
    reduced graphene oxide, nano-composite, screen printed carbon electrode, dopamine, tyrosinase, biosensor


    Reference

    1

    1. W. Schultz, Annu Rev Neurosci, 30, 259-288 (2007).

    2

    2. M. Perry, Q. Li and R. T. Kennedy, Anal. Chim. Acta, 653(1), 1-22 (2009).

    3

    3. F. Musshoff, P. Schmidt, R. Dettmeyer, F. Priemer, K. Jachau and B. Madea, Forensic Sci. Int., 113(1-3), 359-366 (2000).

    4

    4. A. El-Beqqali, A. Kussak and M. Abdel-Rehim, J. Sep Sci., 30(3), 421-424 (2007).

    5

    5. T. Yoshitake, J. Kehr, K. Todoroki, H. Nohta and M. Yamaguchi, Biomed. Chromatogr., 20(3), 267-281 (2006).

    6

    6. A. Kankaanpaa, E. Meririnne, K. Ariniemi and T. Seppala, J. Chromatogr. B, 753(2), 413-419 (2001).

    7

    7. L. Zhang, N. Teshima, T. Hasebe, M. Kurihara and T. Kawashima, Talanta, 50(3), 677-683 (1999).

    8

    8. K. Jackowska and P. Krysinski, Anal. Bioanal Chem., 405(11), 3753-3771 (2013).

    9

    9. D. L. Robinson, A. Hermans, A. T. Seipel and R. M. Wightman, Chem. Rev., 108(7), 2554-2584 (2008).

    10

    10. S. R. Ali, Y. Ma, R. R. Parajuli, Y. Balogun, W. Y. Lai and H. He, Anal. Chem., 79(6), 2583-2587 (2007).

    11

    11. C. F. Tang, S. A. Kumar and S. M. Chen, Anal. Biochem, 380(2), 174-183 (2008).

    12

    12. S. Ku, S. Palanisamy and S. M. Chen, J. Colloid Interface Sci., 411, 182-186 (2013).

    13

    13. Y. L. Zhou, R. H. Tian and J. F. Zhi, Biosens Bioelectron, 22(6), 822-828 (2007).

    14

    14. J. Huang, Y. Liu, H. Hou and T. You, Biosens Bioelectron, 24(4), 632-637 (2008).

    15

    15. K. Min and Y. J. Yoo, Talanta, 80(2), 1007-1011 (2009).

    16

    16. M. Zhou, Y. Zhai and S. Dong, Anal. Chem., 81(14), 5603-5613 (2009).

    17

    17. M. Moreno, A. S. Arribas, E. Bermejo, M. Chicharro, A. Zapardiel, M. C. Rodriguez, Y. Jalit and G. A. Rivas, Talanta, 80(5), 2149-2156 (2010).

    18

    18. K. S. Prasad, G. Muthuraman and J. M. Zen, Electrochem. Comm., 10(4), 559-563 (2008).

    19

    19. J. Ping, J. Wu, Y. Wang and Y. Ying, Biosens Bioelectron, 34(1), 70-76 (2012).

    20

    20. A. Salimi, V. Alizadeh and R. G. Compton, Analytical Sci., 21(11), 1275-1280 (2005).

    21

    21. T. Kuila, S. Bose, P. Khanra, A. K. Mishra, N. H. Kim and J. H. Lee, Biosens Bioelectron, 26(12), 4637-4648(2011).

    22

    22. Z. Liu, B. Liu, J. Kong and J. Deng, Anal. Chem., 72(19), 4707-4712 (2000).

    23

    23. Y. C. Tsai and C. C. Chiu, Sensor. Actuat. B-Chem., 125(1), 10-16 (2007).

    24

    24. E. S. Forzani, G. A. Rivas and V. M. Solis, J. Electroanal. Chem., 435(1-2), 77-84 (1997).

    25

    25. S. Tembe, B. S. Kubal, M. Karve and S. F. D'Souza, Anal. Chim. Acta, 612(2), 212-217 (2008).

    26

    26. Y. Wang, X. Zhang, Y. Chen, H. Xu, Y. Tan and S. Wang, Am. J. Biomed. Sci., 2(3), 209-216 (2010).

    27

    27. S. C. Chang, K. Rawson, C. J. McNeil, Biosens Bioelectron, 17(11-12), 1015-1023 (2002).

    28

    28. M. R. Montereali, L. Della Seta, W. Vastarella and R. Pilloton, J. Mol. Catal. B: Enzym., 64, 189-194 (2010).

    29

    29. R. Solna, E. Dock, A. Christenson, M. Winther-Nielsen, C. Carlsson, J. Emneus, T. Ruzgas and P. Skladal, Anal. Chim. Acta, 528(1), 9-19 (2005).

    30

    30. W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 80(6), 1339-1339 (1958).

    31

    31. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen and R. S. Ruoff, Carbon, 45(7), 1558-1565 (2007).

    32

    32. Y. Wang, J. Liu, L. Liu and D. D. Sun, Nanoscale Res Lett., 6(1), 241 (2011).

    33

    33. W. Qin and X. Li, J. Phys. Chem. C, 114(44), 19009-19015 (2010).

    34

    34. T. E. Barman, ‘Enzyme Handbook’, Vol. 1, Springer, New york, 1969.

    35

    35. J. Njagi, M. M. Chernov, J. C. Leiter, S. Andreescu, Anal. Chem., 82(3), 989-996 (2010).

    상단으로 이동

    Analytical Science and Technology