ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

  • P-ISSN1225-0163
  • E-ISSN2288-8985
  • SCOPUS, ESCI, KCI

논문 상세

Home > 논문 상세
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

논문 상세

    혈장 중 케톤체의 옥심-TMS 유도체화 후 GC-MS/SIM을 이용한 분석

    Determination of plasma ketone body following oximation-trimethylsilyl derivatization using gas chromatography-mass spectrometry selected ion monitoring

    분석과학 / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
    2016, v.29 no.1, pp.49-55
    https://doi.org/10.5806/AST.2016.29.1.49
    윤혜란 (덕성여자대학교)
    • 다운로드 수
    • 조회수

    초록

    케톤체는 생체 에너지 생산과정이 탄수화물보다는 지방산의 의존도가 높을 때 생성되며, 과도한분비는 당뇨병성 케토시스나 선천성 유전성 대사이상질환을 의심할 수 있는 근거가 된다. 따라서 이의신속 정확한 분석법의 개발이 필요하다. 본 연구에서는 혈장을 제단백한 후 hydroxylamine을 가하여 60 oC에서 30 분간 반응시켜 oximation 후 BSTFA를 가한 후 trimethylsilylation 유도체화하여 혈장 중에서 케톤체를 신속하게 정량할 수 있는 GC-MS/SIM 분석법을 개발하였다. 케톤체의 직선성의 범위는 0.001- 250 μg/mL 이었고, 혈장에서의 검출한계는 0.1 pg 이었다. 직선성을 가지는 범위에서의 상관계수(R2)는0.998-0.999이었고, 회수율은 1 μg/mL의 표준품을 첨가하였을 때 88.2-92.3%, 10 μg/mL의 농도를 첨가하였을 때 89.5-94.8% 였으며 RSD는 6.3-9.4%였다. 이 분석법을 정상인과 케토시스 환자의 검체에 적용하여 벨리데이션 하였으며, 본 분석방법은 어린이나 성인의 당뇨성 케토시스나 여러 유전성대사질환환자 중 케토시스를 보이는 환자의 혈장 중 β-hydroxybutyric acid/acetoacetic acid의 비를 계산하여 케톤체를 신속하고 효율적으로 임상검체 분석에 응용할 수 있음을 보여주었다.

    keywords
    ketosis, ketoacidosis, β-hydroxybutyric acid, acetoacetic acid, oximation-trimethylsilylation, GC-MS, selected ion monitoring

    Abstract

    A ketone body (acetoacetic acid, β-hydroxybutyric acid, and acetone) increases from blood or urine when bio-energy dependence pays more fatty acid than glucose. However, in case oxidation of fat is greater than the capacity of the citric acid cycle the fatty acid oxidation is made from acetoacetyl CoA to acetoacetate then, again form β-hydroxyburytic acid to acetone, the diffusion take place into the blood. Enzymes that oxidize ketone body in the brain and nerve tissue blood ketone dody is increased during prolonged fasting, brain used it as energy. In this study, we developed the rapid two step derivatization method for sensitive detection of the ketone body by GC-MS/SIM. The plasma was deproteinized and then the hydroxy and carboxyl groups of ketone body are subjected to extraction and drying then, keto-group were derivatized with hydoxylamine at 60 oC for 30 min for oximation. Then it was trimetyl-silylated with BSTFA at 80oC for 30 min and analyzed using a GC-MS. The linear ranges were in between 0.001 μg/mL and 250 μg/mL for β-hydroxy butyrate, and acetoacetate. The method detection limits were below 0.1 pg over each target compound determined. The mean recoveries (%) of target compounds were ranged from 88.2 % to 92.3 % at 1 μg/mL, from 89.5 % to 94.8 % at 10 μg/mL, with RSD of 6.3-9.4 %. This method could be applied to quantification of ketone bodies which are seen in the keto-acidosis in children and adults from a variety of diseases that cause ketones in the blood and urine.

    keywords
    ketosis, ketoacidosis, β-hydroxybutyric acid, acetoacetic acid, oximation-trimethylsilylation, GC-MS, selected ion monitoring


    참고문헌

    1

    1. P. Kapoor, B. Mandal, U. Chowdhury, S. Singh and U. Kiran, J. Anaesthesiol. Clin. Pharmacol., 27, 225-232(2011).

    2

    2. B. Levy, L. O. Sadoune, A. M. Gelot, P. Bollaert, P. G. Nabet and A. Larcan, Crit. Care. Med., 28, 114-119(2000).

    3

    3. S. Shinde, K. Golam, N. D. Patil and P. Kumar, Indian J. Crit. Med., 9, 145-150 (2005).

    4

    4. V C. Vogel, E. Wessel and H. W. Siesler, Bio-macromolecules, 9, 523-527 (2008).

    5

    5. T. Slamet, P. K. C. Lim, J. W. Mak, J. Storey and R. A. Noor, Tropical Biomed., 8, 85-87 (1991).

    6

    6. J. Karlsson, I. Jacobs, B. Sjödin, P. Tesch, P. Kaiser, O. Sahl and B. Karlberg, Int. J. Sports Med., 4, 52-55(1983).

    7

    7. I. Lorenz and A. Hartmann, Comp. Clin. Path., 12, 169-171 (2003).

    8

    8. A. Zhua, R. Romerob and R. P. Howard, Anal. Biochem., 396, 146-151 (2010).

    9

    9. B. Lloyd, J. Burrin, P. Smythe and K. Alberti, Clin. Chem., 24, 1724-1729 (1978).

    10

    10. D. Constantin-Teodosiu, G. Cederblad and E. Hultman, Anal. Biochem., 198, 347-351 (1991).

    11

    11. M. Kimura, K. Kobayashi, A. Matsuoka and K. Hayashi, Clin. Chem., 31, 596-598 (1985).

    12

    12. S. Felby and E. Nielsen, Forensic. Sci. Int., 64, 83-88(1994).

    13

    13. K. M. D. Holm, K. Linnet, B. S. Rasmussen and A. J. Pedersen, J. Anal. Toxicol., 34, 549-554 (2010).

    14

    14. H. M. A. Hassan and G. A. A. Cooper, J. Anal. Toxicol., 33, 502-507 (2009).

    15

    15. S. Elliott, C. Smith and D. Cassidy, Forensic. Sci. Int., 198, 53-57 (2010).

    16

    16. S. Nissen, M. Van Koevering and D. Webb, Anal. Biochem., 188, 17-19 (1990).

    17

    17. S. Yamato, K. Shinohara, S. Nakagawa, A. Kubota, K. Inamura and G. Watanabe, Anal. Biochem., 384, 145-150 (2009).

    18

    18. S. R. Dahl, K. M. Olsen and D. H. Strand, J. Chromatogr B. 885, 37-42 (2012).

    19

    19. A. Kumps, P. Duez and Y. Mardensa, Metab. Clin. Chem., 5, 708-717 (2002).

    20

    20. X. Xiong, X. Sheng, D. Liu, T. Zeng, Y. Peng and Y. Wang, Anal. Bioanal. Chem., 29, 8825-8833 (2015).

    21

    21. Y. Lu, Y. Dan and C. Chen. Metabolites, 4, 993-1010(2013).

    22

    22. T. Takahashi, K. Yamada, H. Kobayashi, Y. Hasegawa, T. Taketani, S. Fukuda and S. Yamaguchi, Pediatr. Int., 3, 348-353 (2015).

    23

    23. L. Coulier, B. Muilwijk, S. Bijlsma, M. Noga, M. Tienstra, A. Attali, H. van Aken, E. Suidgeest, T. Tuinstra, T. M. Luider, T. Hankemeier and I. Bobeldijk, Metabolomics, 1, 78-87 (2013).

    상단으로 이동

    분석과학